Cargando…
Three-dimensionally networked graphene hydroxide with giant pores and its application in supercapacitors
The three-dimensionally networked and layered structure of graphene hydroxide (GH) was investigated. After lengthy immersion in a NaOH solution, most of the epoxy groups in the graphene oxide were destroyed, and more hydroxyl groups were generated, transforming the graphene oxide into graphene hydro...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4261173/ https://www.ncbi.nlm.nih.gov/pubmed/25492227 http://dx.doi.org/10.1038/srep07419 |
Sumario: | The three-dimensionally networked and layered structure of graphene hydroxide (GH) was investigated. After lengthy immersion in a NaOH solution, most of the epoxy groups in the graphene oxide were destroyed, and more hydroxyl groups were generated, transforming the graphene oxide into graphene hydroxide. Additionally, benzoic acid groups were formed, and the ether groups link the neighboring layers, creating a near-3D structure in the GH. To utilize these unique structural features, electrodes with large pores for use in supercapacitors were fabricated using thermal reduction in vacuum. The reduced GH maintained its layered structure and developed a lot of large of pores between/inside the layers. The GH electrodes exhibited high gravimetric as well as high volumetric capacitance. |
---|