Cargando…

Hypochlorous acid via peroxynitrite activates protein kinase Cθ and insulin resistance in adipocytes

We recently reported that genetic deletion of myeloperoxidase (MPO) alleviates obesity-related insulin resistance in mice in vivo. How MPO impairs insulin sensitivity in adipocytes is poorly characterized. As hypochlorous acid (HOCl) is a principal oxidant product generated by MPO, we evaluated the...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhou, Jun, Wang, Qilong, Ding, Ye, Zou, Ming-Hui
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Bioscientifica Ltd 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4261204/
https://www.ncbi.nlm.nih.gov/pubmed/25381390
http://dx.doi.org/10.1530/JME-14-0213
_version_ 1782348270772682752
author Zhou, Jun
Wang, Qilong
Ding, Ye
Zou, Ming-Hui
author_facet Zhou, Jun
Wang, Qilong
Ding, Ye
Zou, Ming-Hui
author_sort Zhou, Jun
collection PubMed
description We recently reported that genetic deletion of myeloperoxidase (MPO) alleviates obesity-related insulin resistance in mice in vivo. How MPO impairs insulin sensitivity in adipocytes is poorly characterized. As hypochlorous acid (HOCl) is a principal oxidant product generated by MPO, we evaluated the effects of HOCl on insulin signaling in adipocytes differentiated from 3T3-L1 cells. Exposure of 3T3-L1 adipocytes to exogenous HOCl (200 μmol/l) attenuated insulin-stimulated 2-deoxyglucose uptake, GLUT4 translocation, and insulin signals, including tyrosine phosphorylation of insulin receptor substrate 1 (IRS1) and phosphorylation of Akt. Furthermore, treatment with HOCl induced phosphorylation of IRS1 at serine 307, inhibitor κB kinase (IKK), c-Jun NH(2)-terminal kinase (JNK), and phosphorylation of PKCθ (PKCθ). In addition, genetic and pharmacological inhibition of IKK and JNK abolished serine phosphorylation of IRS1 and impairment of insulin signaling by HOCl. Furthermore, knockdown of PKCθ using siRNA transfection suppressed phosphorylation of IKK and JNK and consequently attenuated the HOCl-impaired insulin signaling pathway. Moreover, activation of PKCθ by peroxynitrite was accompanied by increased phosphorylation of IKK, JNK, and IRS1-serine 307. In contrast, ONOO(−) inhibitors abolished HOCl-induced phosphorylation of PKCθ, IKK, JNK, and IRS1-serine 307, as well as insulin resistance. Finally, high-fat diet (HFD)-induced insulin resistance was associated with enhanced phosphorylation of PKCθ, IKK, JNK, and IRS1 at serine 307 in white adipose tissues from WT mice, all of which were not found in Mpo knockout mice fed HFDs. We conclude that HOCl impairs insulin signaling pathway by increasing ONOO(−) mediated phosphorylation of PKCθ, resulting in phosphorylation of IKK/JNK and consequent serine phosphorylation of IRS1 in adipocytes.
format Online
Article
Text
id pubmed-4261204
institution National Center for Biotechnology Information
language English
publishDate 2015
publisher Bioscientifica Ltd
record_format MEDLINE/PubMed
spelling pubmed-42612042015-02-01 Hypochlorous acid via peroxynitrite activates protein kinase Cθ and insulin resistance in adipocytes Zhou, Jun Wang, Qilong Ding, Ye Zou, Ming-Hui J Mol Endocrinol Research We recently reported that genetic deletion of myeloperoxidase (MPO) alleviates obesity-related insulin resistance in mice in vivo. How MPO impairs insulin sensitivity in adipocytes is poorly characterized. As hypochlorous acid (HOCl) is a principal oxidant product generated by MPO, we evaluated the effects of HOCl on insulin signaling in adipocytes differentiated from 3T3-L1 cells. Exposure of 3T3-L1 adipocytes to exogenous HOCl (200 μmol/l) attenuated insulin-stimulated 2-deoxyglucose uptake, GLUT4 translocation, and insulin signals, including tyrosine phosphorylation of insulin receptor substrate 1 (IRS1) and phosphorylation of Akt. Furthermore, treatment with HOCl induced phosphorylation of IRS1 at serine 307, inhibitor κB kinase (IKK), c-Jun NH(2)-terminal kinase (JNK), and phosphorylation of PKCθ (PKCθ). In addition, genetic and pharmacological inhibition of IKK and JNK abolished serine phosphorylation of IRS1 and impairment of insulin signaling by HOCl. Furthermore, knockdown of PKCθ using siRNA transfection suppressed phosphorylation of IKK and JNK and consequently attenuated the HOCl-impaired insulin signaling pathway. Moreover, activation of PKCθ by peroxynitrite was accompanied by increased phosphorylation of IKK, JNK, and IRS1-serine 307. In contrast, ONOO(−) inhibitors abolished HOCl-induced phosphorylation of PKCθ, IKK, JNK, and IRS1-serine 307, as well as insulin resistance. Finally, high-fat diet (HFD)-induced insulin resistance was associated with enhanced phosphorylation of PKCθ, IKK, JNK, and IRS1 at serine 307 in white adipose tissues from WT mice, all of which were not found in Mpo knockout mice fed HFDs. We conclude that HOCl impairs insulin signaling pathway by increasing ONOO(−) mediated phosphorylation of PKCθ, resulting in phosphorylation of IKK/JNK and consequent serine phosphorylation of IRS1 in adipocytes. Bioscientifica Ltd 2015-02 /pmc/articles/PMC4261204/ /pubmed/25381390 http://dx.doi.org/10.1530/JME-14-0213 Text en © 2015 The authors http://creativecommons.org/licenses/by/3.0/deed.en_GB This work is licensed under a Creative Commons Attribution 3.0 Unported License (http://creativecommons.org/licenses/by/3.0/deed.en_GB)
spellingShingle Research
Zhou, Jun
Wang, Qilong
Ding, Ye
Zou, Ming-Hui
Hypochlorous acid via peroxynitrite activates protein kinase Cθ and insulin resistance in adipocytes
title Hypochlorous acid via peroxynitrite activates protein kinase Cθ and insulin resistance in adipocytes
title_full Hypochlorous acid via peroxynitrite activates protein kinase Cθ and insulin resistance in adipocytes
title_fullStr Hypochlorous acid via peroxynitrite activates protein kinase Cθ and insulin resistance in adipocytes
title_full_unstemmed Hypochlorous acid via peroxynitrite activates protein kinase Cθ and insulin resistance in adipocytes
title_short Hypochlorous acid via peroxynitrite activates protein kinase Cθ and insulin resistance in adipocytes
title_sort hypochlorous acid via peroxynitrite activates protein kinase cθ and insulin resistance in adipocytes
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4261204/
https://www.ncbi.nlm.nih.gov/pubmed/25381390
http://dx.doi.org/10.1530/JME-14-0213
work_keys_str_mv AT zhoujun hypochlorousacidviaperoxynitriteactivatesproteinkinasecthandinsulinresistanceinadipocytes
AT wangqilong hypochlorousacidviaperoxynitriteactivatesproteinkinasecthandinsulinresistanceinadipocytes
AT dingye hypochlorousacidviaperoxynitriteactivatesproteinkinasecthandinsulinresistanceinadipocytes
AT zouminghui hypochlorousacidviaperoxynitriteactivatesproteinkinasecthandinsulinresistanceinadipocytes