Cargando…
Vascular channels formed by subpopulations of PECAM1(+) melanoma cells
Targeting the vasculature remains a promising approach for treating solid tumors; however, the mechanisms of tumor neovascularization are diverse and complex. Here we uncover a new subpopulation of melanoma cells that express the vascular cell adhesion molecule PECAM1, but not VEGFR-2, and participa...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4261234/ https://www.ncbi.nlm.nih.gov/pubmed/25335460 http://dx.doi.org/10.1038/ncomms6200 |
Sumario: | Targeting the vasculature remains a promising approach for treating solid tumors; however, the mechanisms of tumor neovascularization are diverse and complex. Here we uncover a new subpopulation of melanoma cells that express the vascular cell adhesion molecule PECAM1, but not VEGFR-2, and participate in a PECAM1-dependent form of vasculogenic mimicry (VM). Clonally-derived PECAM1(+) tumor cells coalesce to form PECAM1-dependent networks in vitro and they generate well-perfused, VEGF-independent channels in mice. The neural crest specifier AP-2α is diminished in PECAM1(+) melanoma cells and is a transcriptional repressor of PECAM1. Reintroduction of AP-2α into PECAM1(+) tumor cells represses PECAM1 and abolishes tube-forming ability whereas AP-2α knockdown in PECAM1(−) tumor cells up-regulates PECAM1 expression and promotes tube formation. Thus, VM-competent subpopulations, rather than all cells within a tumor, may instigate VM, supplant host-derived endothelium, and form PECAM1-dependent conduits that are not diminished by neutralizing VEGF. |
---|