Cargando…
Learning to improve medical decision making from imbalanced data without a priori cost
BACKGROUND: In a medical data set, data are commonly composed of a minority (positive or abnormal) group and a majority (negative or normal) group and the cost of misclassifying a minority sample as a majority sample is highly expensive. This is the so-called imbalanced classification problem. The t...
Autores principales: | Wan, Xiang, Liu, Jiming, Cheung, William K, Tong, Tiejun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4261533/ https://www.ncbi.nlm.nih.gov/pubmed/25480146 http://dx.doi.org/10.1186/s12911-014-0111-9 |
Ejemplares similares
-
Inferring Epidemic Network Topology from Surveillance Data
por: Wan, Xiang, et al.
Publicado: (2014) -
Learning misclassification costs for imbalanced classification on gene expression data
por: Lu, Huijuan, et al.
Publicado: (2019) -
Learning from imbalanced data sets
por: Fernández, Alberto, et al.
Publicado: (2018) -
Cost-sensitive learning strategies for high-dimensional and imbalanced data: a comparative study
por: Pes, Barbara, et al.
Publicado: (2021) -
Cost-Sensitive Learning for Anomaly Detection in Imbalanced ECG Data Using Convolutional Neural Networks
por: Zubair, Muhammad, et al.
Publicado: (2022)