Cargando…
Comparison of classification methods that combine clinical data and high-dimensional mass spectrometry data
BACKGROUND: The identification of new diagnostic or prognostic biomarkers is one of the main aims of clinical cancer research. Technologies like mass spectrometry are commonly being used in proteomic research. Mass spectrometry signals show the proteomic profiles of the individuals under study at a...
Autores principales: | Truntzer, Caroline, Mostacci, Elise, Jeannin, Aline, Petit, Jean-Michel, Ducoroy, Patrick, Cardot, Hervé |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4261611/ https://www.ncbi.nlm.nih.gov/pubmed/25432156 http://dx.doi.org/10.1186/s12859-014-0385-z |
Ejemplares similares
-
Importance of data structure in comparing two dimension reduction methods for classification of microarray gene expression data
por: Truntzer, Caroline, et al.
Publicado: (2007) -
Bayesian ABC-MCMC Classification of Liquid Chromatography–Mass Spectrometry Data
por: Banerjee, Upamanyu, et al.
Publicado: (2017) -
Cumulative learning enables convolutional neural network representations for small mass spectrometry data classification
por: Seddiki, Khawla, et al.
Publicado: (2020) -
DEIMoS: An Open-Source Tool for Processing High-Dimensional
Mass Spectrometry Data
por: Colby, Sean M., et al.
Publicado: (2022) -
Recursive SVM feature selection and sample classification for mass-spectrometry and microarray data
por: Zhang, Xuegong, et al.
Publicado: (2006)