Cargando…
Predicting virus mutations through statistical relational learning
BACKGROUND: Viruses are typically characterized by high mutation rates, which allow them to quickly develop drug-resistant mutations. Mining relevant rules from mutation data can be extremely useful to understand the virus adaptation mechanism and to design drugs that effectively counter potentially...
Autores principales: | Cilia, Elisa, Teso, Stefano, Ammendola, Sergio, Lenaerts, Tom, Passerini, Andrea |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4261881/ https://www.ncbi.nlm.nih.gov/pubmed/25238967 http://dx.doi.org/10.1186/1471-2105-15-309 |
Ejemplares similares
-
Combining learning and constraints for genome-wide protein annotation
por: Teso, Stefano, et al.
Publicado: (2019) -
Joint probabilistic-logical refinement of multiple protein feature predictors
por: Teso, Stefano, et al.
Publicado: (2014) -
Automatic prediction of catalytic residues by modeling residue structural neighborhood
por: Cilia, Elisa, et al.
Publicado: (2010) -
Improved multi-level protein–protein interaction prediction with semantic-based regularization
por: Saccà, Claudio, et al.
Publicado: (2014) -
Accurate Prediction of the Dynamical Changes within the Second PDZ Domain of PTP1e
por: Cilia, Elisa, et al.
Publicado: (2012)