Cargando…

Molecular Diversity of Eukaryotes in Municipal Wastewater Treatment Processes as Revealed by 18S rRNA Gene Analysis

Eukaryotic communities involved in sewage treatment processes have been investigated by morphological identification, but have not yet been well-characterized using molecular approaches. In the present study, eukaryotic communities were characterized by constructing 18S rRNA gene clone libraries. Th...

Descripción completa

Detalles Bibliográficos
Autores principales: Matsunaga, Kengo, Kubota, Kengo, Harada, Hideki
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Japanese Society of Microbial Ecology (JSME)/The Japanese Society of Soil Microbiology (JSSM) 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4262364/
https://www.ncbi.nlm.nih.gov/pubmed/25491751
http://dx.doi.org/10.1264/jsme2.ME14112
Descripción
Sumario:Eukaryotic communities involved in sewage treatment processes have been investigated by morphological identification, but have not yet been well-characterized using molecular approaches. In the present study, eukaryotic communities were characterized by constructing 18S rRNA gene clone libraries. The phylogenetic affiliations of a total of 843 clones were Alveolata, Fungi, Rhizaria, Euglenozoa, Stramenopiles, Amoebozoa, and Viridiplantae as protozoans and Rotifera, Gastrotricha, and Nematoda as metazoans. Sixty percent of the clones had <97% sequence identity to described eukaryotes, indicating the greater diversity of eukaryotes than previously recognized. A core OTU closely related to Epistylis chrysemydis was identified, and several OTUs were shared by 4–8 libraries. Members of the uncultured lineage LKM11 in Cryptomycota were predominant fungi in sewage treatment processes. This comparative study represents an initial step in furthering understanding of the diversity and role of eukaryotes in sewage treatment processes.