Cargando…
Regulation of the cell cycle and PI3K/Akt/mTOR signaling pathway by tanshinone I in human breast cancer cell lines
Breast cancer is the second leading cause of cancer-related mortality in females worldwide. Therefore, identifying alternative strategies to combat the disease mortality is important. The aim of the present study was to investigate the effect of tanshinone I (Tan I) on the tumorigenicity of estrogen...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
D.A. Spandidos
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4262478/ https://www.ncbi.nlm.nih.gov/pubmed/25355053 http://dx.doi.org/10.3892/mmr.2014.2819 |
Sumario: | Breast cancer is the second leading cause of cancer-related mortality in females worldwide. Therefore, identifying alternative strategies to combat the disease mortality is important. The aim of the present study was to investigate the effect of tanshinone I (Tan I) on the tumorigenicity of estrogen-responsive MCF-7 and estrogen-independent MDA-MB-453 human breast cancer cells. The cytotoxicity of Tan I was evaluated using a Cell Counting Kit-8 assay, the apoptosis and cell cycle distribution were detected using flow cytometry and the cell morphology was observed using a fluorescence microscope. In addition, the cell cycle regulatory proteins and apoptosis-associated proteins involved in the phosphatidylinositide 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) signaling pathway were detected using western blot analysis using specific protein antibodies. The MCF-7 and MDA-MB-453 cells were equally sensitive to Tan I regardless of their responsiveness to estrogen. Tan I exerted similar antiproliferative activities and induction of apoptosis, resulting in S phase arrest accompanied by decreases in cyclin B and increases in cyclin E and cyclin A proteins, which may have been associated with the upregulation of cyclin-dependent kinase inhibitors p21(Cip1) and p27(Kip1). In addition, Tan I was found to downregulate anti-apoptotic and upregulate associated apoptotic components of the PI3K/Akt/mTOR signaling pathway. Notably, treatment with the PI3K inhibitor, LY294002, decreased the levels of phosphorylated (p)-PI3K, p-Akt and p-mTOR. These results clearly indicated that the mechanism of action of Tan I involved, at least partially, an effect on the PI3K/Akt/mTOR signaling pathway, providing new information for anticancer drug design and development. |
---|