Cargando…

Fine-scale genetic differentiation of a temperate herb: relevance of local environments and demographic change

The genetic structure of a plant species is shaped by environmental adaptation and demographic factors, but their relative contributions are still unknown. To examine the environment- or geography-related differentiation, we quantified genetic variation among 41 populations of a temperate herb, Arab...

Descripción completa

Detalles Bibliográficos
Autores principales: Sato, Yasuhiro, Kudoh, Hiroshi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4262940/
https://www.ncbi.nlm.nih.gov/pubmed/25387749
http://dx.doi.org/10.1093/aobpla/plu070
Descripción
Sumario:The genetic structure of a plant species is shaped by environmental adaptation and demographic factors, but their relative contributions are still unknown. To examine the environment- or geography-related differentiation, we quantified genetic variation among 41 populations of a temperate herb, Arabidopsis halleri subsp. gemmifera (Brassicaceae). We analysed 19 microsatellite loci, which showed a significant population differentiation and a moderate within-population genetic diversity (global G(st) = 0.42 and H(s) = 0.19). Our structure analysis and phylogenetic network did not detect more than two genetic groups across the Japanese mainland but found fine-scale genetic differentiations and admixed patterns around the central area. Across the Japanese mainland, we found significant evidence for isolation-by-distance but not for isolation-by-environments. However, at least within the central area, the magnitude of genetic differentiation tended to increase with microhabitat dissimilarity under light conditions and water availability. Furthermore, most populations have been estimated to experience a recent decline in the effective population size, indicating a possibility of bottleneck effects on the pattern of genetic variation. These findings highlight a potential influence of the microhabitat conditions and demographic changes on the local-scale genetic differentiation among natural plant populations.