Cargando…
The γ-secretase complex: from structure to function
One of the most critical pathological features of Alzheimer’s disease (AD) is the accumulation of β-amyloid (Aβ) peptides that form extracellular senile plaques in the brain. Aβ is derived from β-amyloid precursor protein (APP) through sequential cleavage by β- and γ-secretases. γ-secretase is a hig...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4263104/ https://www.ncbi.nlm.nih.gov/pubmed/25565961 http://dx.doi.org/10.3389/fncel.2014.00427 |
Sumario: | One of the most critical pathological features of Alzheimer’s disease (AD) is the accumulation of β-amyloid (Aβ) peptides that form extracellular senile plaques in the brain. Aβ is derived from β-amyloid precursor protein (APP) through sequential cleavage by β- and γ-secretases. γ-secretase is a high molecular weight complex minimally composed of four components: presenilins (PS), nicastrin, anterior pharynx defective 1 (APH-1), and presenilin enhancer 2 (PEN-2). In addition to APP, γ-secretase also cleaves many other type I transmembrane (TM) protein substrates. As a crucial enzyme for Aβ production, γ-secretase is an appealing therapeutic target for AD. Here, we summarize current knowledge on the structure and function of γ-secretase, as well as recent progress in developing γ-secretase targeting drugs for AD treatment. |
---|