Cargando…

Graphene and Other Nanomaterial-Based Electrochemical Aptasensors

Electrochemical aptasensors, which are based on the specificity of aptamer-target recognition, with electrochemical transduction for analytical purposes have received particular attention due to their high sensitivity and selectivity, simple instrumentation, as well as low production cost. Aptamers...

Descripción completa

Detalles Bibliográficos
Autores principales: Hernandez, Frank J., Ozalp, Veli Cengiz
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4263542/
https://www.ncbi.nlm.nih.gov/pubmed/25585628
http://dx.doi.org/10.3390/bios2010001
Descripción
Sumario:Electrochemical aptasensors, which are based on the specificity of aptamer-target recognition, with electrochemical transduction for analytical purposes have received particular attention due to their high sensitivity and selectivity, simple instrumentation, as well as low production cost. Aptamers are functional nucleic acids with specific and high affinity to their targets, similar to antibodies. However, they are completely selected in vitro in contrast to antibodies. Due to their stability, easy chemical modifications and proneness to nanostructured device construction, aptamer-based sensors have been incorporated in a variety of applications including electrochemical sensing devices. In recent years, the performance of aptasensors has been augmented by incorporating novel nanomaterials in the preparation of better electrochemical sensors. In this review, we summarize the recent trends in the use of nanomaterials for developing electrochemical aptasensors.