Cargando…

A Self-Referencing Detection of Microorganisms Using Surface Enhanced Raman Scattering Nanoprobes in a Test-in-a-Tube Platform

Anisotropic nanoparticles (i.e., silver nanocubes) were functionalized with target-specific antibodies and Raman active tags to serve as nanoprobes for the rapid detection of bacteria in a test-in-a-tube platform. A self-referencing scheme was developed and implemented in which surface enhanced Rama...

Descripción completa

Detalles Bibliográficos
Autores principales: Xiao, Nan, Wang, Chao, Yu, Chenxu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4263577/
https://www.ncbi.nlm.nih.gov/pubmed/25586261
http://dx.doi.org/10.3390/bios3030312
Descripción
Sumario:Anisotropic nanoparticles (i.e., silver nanocubes) were functionalized with target-specific antibodies and Raman active tags to serve as nanoprobes for the rapid detection of bacteria in a test-in-a-tube platform. A self-referencing scheme was developed and implemented in which surface enhanced Raman spectroscopic (SERS) signatures of the targets were observed superimposed with the SERS signals of the Raman tags. The assessment through the dual signals (superimposed target and tag Raman signatures) supported a specific recognition of the targets in a single step with no washing/separation needed to a sensitivity of 10(2) CFU/mL, even in the presence of non-target bacteria at a 10 times higher concentration. The self-referencing protocol implemented with a portable Raman spectrometer potentially can become an easy-to-use, field-deployable spectroscopic sensor for onsite detection of pathogenic microorganisms.