Cargando…

β2-Adrenoceptor Activation Modulates Skin Wound Healing Processes to Reduce Scarring

During wound healing, excessive inflammation, angiogenesis, and differentiated human dermal fibroblast (HDF ) function contribute to scarring, whereas hyperpigmentation negatively affects scar quality. Over 100 million patients heal with a scar every year. To investigate the role of the beta 2 adren...

Descripción completa

Detalles Bibliográficos
Autores principales: Le Provost, Gabrielle S, Pullar, Christine E
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4263603/
https://www.ncbi.nlm.nih.gov/pubmed/25050597
http://dx.doi.org/10.1038/jid.2014.312
Descripción
Sumario:During wound healing, excessive inflammation, angiogenesis, and differentiated human dermal fibroblast (HDF ) function contribute to scarring, whereas hyperpigmentation negatively affects scar quality. Over 100 million patients heal with a scar every year. To investigate the role of the beta 2 adrenergic receptor (β2AR) in wound scarring, the ability of beta 2 adrenergic receptor agonist (β2ARag) to alter HDF differentiation and function, wound inflammation, angiogenesis, and wound scarring was explored in HDFs, zebrafish, chick chorioallantoic membrane assay (CAM), and a porcine skin wound model, respectively. Here we identify a β2AR-mediated mechanism for scar reduction. β2ARag significantly reduced HDF differentiation, via multiple cAMP and/or fibroblast growth factor 2 or basic FGF (FGF2)-dependent mechanisms, in the presence of transforming growth factor betaβ1, reduced contractile function, and inhibited mRNA expression of a number of profibrotic markers. β2ARag also reduced inflammation and angiogenesis in zebrafish and CAMs in vivo, respectively. In Red Duroc pig full-thickness wounds, β2ARag reduced both scar area and hyperpigmentation by almost 50% and significantly improved scar quality. Indeed, mechanisms delineated in vitro and in other in vivo models were evident in the β2ARag-treated porcine scars in vivo. Both macrophage infiltration and angiogenesis were initially decreased, whereas DF function was impaired in the β2ARag-treated porcine wound bed. These data collectively reveal the potential of β2ARag to improve skin scarring.