Cargando…

Predictors and prevention of flow insufficiency due to limited flow demand

BACKGROUND: We investigated the impacts of flow demand and native coronary stenosis on graft flow and patency. METHODS: We reviewed the angiograms of 549 bypass grafts in 301 patients who underwent off-pump coronary artery bypass grafting since 2007. Grafts consisted of 237 internal thoracic artery...

Descripción completa

Detalles Bibliográficos
Autores principales: Nakajima, Hiroyuki, Iguchi, Atsushi, Tabata, Mimiko, Koike, Hiroyuki, Morita, Kozo, Takahashi, Ken, Asakura, Toshihisa, Nishimura, Shigeyuki, Niinami, Hiroshi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4264538/
https://www.ncbi.nlm.nih.gov/pubmed/25471304
http://dx.doi.org/10.1186/s13019-014-0188-3
Descripción
Sumario:BACKGROUND: We investigated the impacts of flow demand and native coronary stenosis on graft flow and patency. METHODS: We reviewed the angiograms of 549 bypass grafts in 301 patients who underwent off-pump coronary artery bypass grafting since 2007. Grafts consisted of 237 internal thoracic artery to left anterior descending artery; 97 internal thoracic artery and 52 saphenous vein grafts to left circumflex artery; and 109 gastroepiploic artery and 54 saphenous vein grafts to right coronary artery. We selected only individual bypass grafts created as the sole bypass graft to the coronary vascular region. Flow insufficiency was defined as ≤ 20 ml/min measured intraoperatively. When a significant difference in the incidence of flow insufficiency or “not functional” occurred between higher and lower values rather than the particular minimal luminal diameter value, the highest value was defined as the cut-off minimal luminal diameter. Distal lesions were defined as stenosis at segment #4, 7, 8, 12, 13, 14, or 15. RESULTS: Flow insufficiency was found in 112/549 (20.4%) bypass grafts. For internal thoracic artery to left circumflex artery grafts, the cut-off minimal luminal diameter for proximal and distal lesions was 1.25 mm and 0.75 mm, respectively. For gastroepiploic artery to right coronary artery grafts, the cut-off minimal luminal diameter was 0.82 mm for proximal lesions (p = 0.005), while 10 (71%) of 14 gastroepiploic artery grafts for distal lesions presented with flow insufficiency. Univariate and multivariate analysis identified a distal lesion (odds ratio (OR): 3.12, p < 0.0001); minimal luminal diameter greater than the cut-off value (OR: 3.64, p < 0.0001); right coronary artery (OR: 18.2, p = 0.0002) and left circumflex artery (OR; 2.29, p = 0.009) grafting; and a history of myocardial infarction in the grafted region (OR: 2.21, p = 0.02) as significant predictors of flow insufficiency. CONCLUSIONS: Both competitive flow and insufficient flow demand cause graft failure. For distal lesions, more severe stenosis is necessary to avoid graft failure, compared with proximal lesions. A revascularization strategy for distal lesions should be discussed separately from that for proximal lesions. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13019-014-0188-3) contains supplementary material, which is available to authorized users.