Cargando…

The growth of human scalp hair in females using visible red light laser and LED sources

BACKGROUND AND OBJECTIVES: Low level laser (light) therapy (LLLT) has been demonstrated to promote hair growth in males. A double-blind randomized controlled trial was undertaken to define the safety and physiologic effects of LLLT on females with androgenic alopecia. METHODS: Forty-seven females (1...

Descripción completa

Detalles Bibliográficos
Autores principales: Lanzafame, Raymond J, Blanche, Raymond R, Chiacchierini, Richard P, Kazmirek, Eric R, Sklar, Jeffrey A
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BlackWell Publishing Ltd 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4265291/
https://www.ncbi.nlm.nih.gov/pubmed/25124964
http://dx.doi.org/10.1002/lsm.22277
Descripción
Sumario:BACKGROUND AND OBJECTIVES: Low level laser (light) therapy (LLLT) has been demonstrated to promote hair growth in males. A double-blind randomized controlled trial was undertaken to define the safety and physiologic effects of LLLT on females with androgenic alopecia. METHODS: Forty-seven females (18–60 years old, Fitzpatrick I–IV, and Ludwig–Savin Baldness Scale I-2, I-3, I-4, II-1, II-2 baldness patterns) were recruited. A transition zone scalp site was selected; hairs were trimmed to 3 mm height; the area was tattooed and photographed. The active group received a “TOPHAT655” unit containing 21, 5 mW diode lasers (655 ± 5 nm) and 30 LEDS (655 ± 20 nm), in a bicycle-helmet like apparatus. The placebo group unit appeared identical, containing incandescent red lights. Patients treated at home every other day × 16 weeks (60 treatments, 67 J/cm(2) irradiance/25 minute treatment, 2.9 J dose), with follow up and photography at 16 weeks. A masked 2.85 cm(2) photographic area was evaluated by another blinded investigator. The primary endpoint was the percent increase in hair counts from baseline. RESULTS: Forty-two patients completed the study (24 active, 18 sham). No adverse events or side effects were reported. Baseline hair counts were 228.2 ± 133.4 (N = 18) in the sham and 209.6 ± 118.5 (N = 24) in the active group (P = 0.642). Post Treatment hair counts were 252.1 ± 143.3 (N = 18) in the sham group and 309.9 ± 166.6 (N = 24) in the active group (P = 0.235). The change in hair counts over baseline was 23.9 ± 30.1 (N = 18) in the sham group and 100.3 ± 53.4 (N = 24) in the active group (P < 0.0001). The percent hair increase over the duration of the study was 11.05 ± 48.30 (N = 18) for the sham group and 48.07 ± 17.61 (N = 24) for the active group (P < 0.001). This demonstrates a 37% increase in hair growth in the active treatment group as compared to the placebo group. CONCLUSIONS: LLLT of the scalp at 655 nm significantly improved hair counts in women with androgenetic alopecia at a rate similar to that observed in males using the same parameters. Lasers Surg. Med. 46:601–607, 2014. © 2014 The Authors. Lasers in Surgery and Medicine published by Wiley Periodicals, Inc.