Cargando…
Phenotypic effects of concomitant insensitive acetylcholinesterase (ace-1(R)) and knockdown resistance (kdr(R)) in Anopheles gambiae: a hindrance for insecticide resistance management for malaria vector control
BACKGROUND: Malaria is endemic in sub-Saharan Africa with considerable burden for human health. Major insecticide resistance mechanisms such as kdr(R) and ace-1(R)alleles constitute a hindrance to malaria vector control programs. Anopheles gambiae bearing both kdr and ace-1 resistant alleles are inc...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4265331/ https://www.ncbi.nlm.nih.gov/pubmed/25471264 http://dx.doi.org/10.1186/s13071-014-0548-9 |
_version_ | 1782348867013967872 |
---|---|
author | Assogba, Benoît S Djogbénou, Luc S Saizonou, Jacques Milesi, Pascal Djossou, Laurette Djegbe, Innocent Oumbouke, Welbeck A Chandre, Fabrice Baba-Moussa, Lamine Weill, Mylene Makoutodé, Michel |
author_facet | Assogba, Benoît S Djogbénou, Luc S Saizonou, Jacques Milesi, Pascal Djossou, Laurette Djegbe, Innocent Oumbouke, Welbeck A Chandre, Fabrice Baba-Moussa, Lamine Weill, Mylene Makoutodé, Michel |
author_sort | Assogba, Benoît S |
collection | PubMed |
description | BACKGROUND: Malaria is endemic in sub-Saharan Africa with considerable burden for human health. Major insecticide resistance mechanisms such as kdr(R) and ace-1(R)alleles constitute a hindrance to malaria vector control programs. Anopheles gambiae bearing both kdr and ace-1 resistant alleles are increasingly recorded in wild populations. In order to maintain the efficacy of vector control strategies, the characterization of concomitant kdr and ace-1 resistance, and their pleiotropic effects on malaria vector phenotype on insecticide efficacy are important. METHODS: Larval and adult bioassays were performed with different insecticide classes used in public health following WHO standard guidelines on four laboratory Anopheles gambiae strains, sharing the same genetic background but harboring distinct resistance status: KISUMU with no resistance allele; ACERKIS with ace-1(R) allele; KISKDR with kdr(R) allele and ACERKDRKIS with both resistance alleles’ ace-1(R) and kdr(R). RESULTS: Larval bioassays indicate that the homozygote resistant strain harboring both alleles (ACERKDRKIS) displayed slightly but significantly higher resistance level to various insecticides like carbamates (bendiocarb, p < 0.001; propoxur, p = 0.02) and organophosphates (chlorpyriphos-methyl, p = 0.002; fenitrothion, p < 0.001) when compared to ACERKIS strain. However, no differences were recorded between ACERKDRKIS and KISKDR resistance level against permethrin (Pyrethroid, p = 0.7) and DDT (Organochlorine, p = 0.24). For adult bioassays, the percentages of mosquitoes knocked down were significantly lower for ACERKDRKIS than for KISKDR with permethrin (p = 0.003) but not with deltamethrin. The percentage of mortality from adult bioassays was similar between ACERKDRKIS and ACERKIS with carbamates and organophosphates, or between ACERKDRKIS and KISKDR with pyrethroid and DDT. Concerning acetylcholinesterase enzyme, ACERKDRKIS strain showed similarAChE1 activity than that of ACERKIS. CONCLUSION: The presence of both kdr(R) and ace-1(R) alleles seems to increase the resistance levels to both carbamate and organophosphate insecticides and at operational level, may represent an important threat to malaria vector control programs in West Africa. |
format | Online Article Text |
id | pubmed-4265331 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-42653312014-12-14 Phenotypic effects of concomitant insensitive acetylcholinesterase (ace-1(R)) and knockdown resistance (kdr(R)) in Anopheles gambiae: a hindrance for insecticide resistance management for malaria vector control Assogba, Benoît S Djogbénou, Luc S Saizonou, Jacques Milesi, Pascal Djossou, Laurette Djegbe, Innocent Oumbouke, Welbeck A Chandre, Fabrice Baba-Moussa, Lamine Weill, Mylene Makoutodé, Michel Parasit Vectors Research BACKGROUND: Malaria is endemic in sub-Saharan Africa with considerable burden for human health. Major insecticide resistance mechanisms such as kdr(R) and ace-1(R)alleles constitute a hindrance to malaria vector control programs. Anopheles gambiae bearing both kdr and ace-1 resistant alleles are increasingly recorded in wild populations. In order to maintain the efficacy of vector control strategies, the characterization of concomitant kdr and ace-1 resistance, and their pleiotropic effects on malaria vector phenotype on insecticide efficacy are important. METHODS: Larval and adult bioassays were performed with different insecticide classes used in public health following WHO standard guidelines on four laboratory Anopheles gambiae strains, sharing the same genetic background but harboring distinct resistance status: KISUMU with no resistance allele; ACERKIS with ace-1(R) allele; KISKDR with kdr(R) allele and ACERKDRKIS with both resistance alleles’ ace-1(R) and kdr(R). RESULTS: Larval bioassays indicate that the homozygote resistant strain harboring both alleles (ACERKDRKIS) displayed slightly but significantly higher resistance level to various insecticides like carbamates (bendiocarb, p < 0.001; propoxur, p = 0.02) and organophosphates (chlorpyriphos-methyl, p = 0.002; fenitrothion, p < 0.001) when compared to ACERKIS strain. However, no differences were recorded between ACERKDRKIS and KISKDR resistance level against permethrin (Pyrethroid, p = 0.7) and DDT (Organochlorine, p = 0.24). For adult bioassays, the percentages of mosquitoes knocked down were significantly lower for ACERKDRKIS than for KISKDR with permethrin (p = 0.003) but not with deltamethrin. The percentage of mortality from adult bioassays was similar between ACERKDRKIS and ACERKIS with carbamates and organophosphates, or between ACERKDRKIS and KISKDR with pyrethroid and DDT. Concerning acetylcholinesterase enzyme, ACERKDRKIS strain showed similarAChE1 activity than that of ACERKIS. CONCLUSION: The presence of both kdr(R) and ace-1(R) alleles seems to increase the resistance levels to both carbamate and organophosphate insecticides and at operational level, may represent an important threat to malaria vector control programs in West Africa. BioMed Central 2014-12-03 /pmc/articles/PMC4265331/ /pubmed/25471264 http://dx.doi.org/10.1186/s13071-014-0548-9 Text en © Assogba et al.; licensee BioMed Central. 2014 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Research Assogba, Benoît S Djogbénou, Luc S Saizonou, Jacques Milesi, Pascal Djossou, Laurette Djegbe, Innocent Oumbouke, Welbeck A Chandre, Fabrice Baba-Moussa, Lamine Weill, Mylene Makoutodé, Michel Phenotypic effects of concomitant insensitive acetylcholinesterase (ace-1(R)) and knockdown resistance (kdr(R)) in Anopheles gambiae: a hindrance for insecticide resistance management for malaria vector control |
title | Phenotypic effects of concomitant insensitive acetylcholinesterase (ace-1(R)) and knockdown resistance (kdr(R)) in Anopheles gambiae: a hindrance for insecticide resistance management for malaria vector control |
title_full | Phenotypic effects of concomitant insensitive acetylcholinesterase (ace-1(R)) and knockdown resistance (kdr(R)) in Anopheles gambiae: a hindrance for insecticide resistance management for malaria vector control |
title_fullStr | Phenotypic effects of concomitant insensitive acetylcholinesterase (ace-1(R)) and knockdown resistance (kdr(R)) in Anopheles gambiae: a hindrance for insecticide resistance management for malaria vector control |
title_full_unstemmed | Phenotypic effects of concomitant insensitive acetylcholinesterase (ace-1(R)) and knockdown resistance (kdr(R)) in Anopheles gambiae: a hindrance for insecticide resistance management for malaria vector control |
title_short | Phenotypic effects of concomitant insensitive acetylcholinesterase (ace-1(R)) and knockdown resistance (kdr(R)) in Anopheles gambiae: a hindrance for insecticide resistance management for malaria vector control |
title_sort | phenotypic effects of concomitant insensitive acetylcholinesterase (ace-1(r)) and knockdown resistance (kdr(r)) in anopheles gambiae: a hindrance for insecticide resistance management for malaria vector control |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4265331/ https://www.ncbi.nlm.nih.gov/pubmed/25471264 http://dx.doi.org/10.1186/s13071-014-0548-9 |
work_keys_str_mv | AT assogbabenoits phenotypiceffectsofconcomitantinsensitiveacetylcholinesteraseace1randknockdownresistancekdrrinanophelesgambiaeahindranceforinsecticideresistancemanagementformalariavectorcontrol AT djogbenoulucs phenotypiceffectsofconcomitantinsensitiveacetylcholinesteraseace1randknockdownresistancekdrrinanophelesgambiaeahindranceforinsecticideresistancemanagementformalariavectorcontrol AT saizonoujacques phenotypiceffectsofconcomitantinsensitiveacetylcholinesteraseace1randknockdownresistancekdrrinanophelesgambiaeahindranceforinsecticideresistancemanagementformalariavectorcontrol AT milesipascal phenotypiceffectsofconcomitantinsensitiveacetylcholinesteraseace1randknockdownresistancekdrrinanophelesgambiaeahindranceforinsecticideresistancemanagementformalariavectorcontrol AT djossoulaurette phenotypiceffectsofconcomitantinsensitiveacetylcholinesteraseace1randknockdownresistancekdrrinanophelesgambiaeahindranceforinsecticideresistancemanagementformalariavectorcontrol AT djegbeinnocent phenotypiceffectsofconcomitantinsensitiveacetylcholinesteraseace1randknockdownresistancekdrrinanophelesgambiaeahindranceforinsecticideresistancemanagementformalariavectorcontrol AT oumboukewelbecka phenotypiceffectsofconcomitantinsensitiveacetylcholinesteraseace1randknockdownresistancekdrrinanophelesgambiaeahindranceforinsecticideresistancemanagementformalariavectorcontrol AT chandrefabrice phenotypiceffectsofconcomitantinsensitiveacetylcholinesteraseace1randknockdownresistancekdrrinanophelesgambiaeahindranceforinsecticideresistancemanagementformalariavectorcontrol AT babamoussalamine phenotypiceffectsofconcomitantinsensitiveacetylcholinesteraseace1randknockdownresistancekdrrinanophelesgambiaeahindranceforinsecticideresistancemanagementformalariavectorcontrol AT weillmylene phenotypiceffectsofconcomitantinsensitiveacetylcholinesteraseace1randknockdownresistancekdrrinanophelesgambiaeahindranceforinsecticideresistancemanagementformalariavectorcontrol AT makoutodemichel phenotypiceffectsofconcomitantinsensitiveacetylcholinesteraseace1randknockdownresistancekdrrinanophelesgambiaeahindranceforinsecticideresistancemanagementformalariavectorcontrol |