Cargando…

Association between changes in reproductive activity and D-glucose metabolism in the tephritid fruit fly, Bactrocera dorsalis (Hendel)

Reproduction is an important life process in insects; however, few studies have attempted to demonstrate the association between reproductive activity and energy metabolism. To address this problem, we focused on the reproductive changes in Bactrocera dorsalis males. We analyzed B. dorsalis male gen...

Descripción completa

Detalles Bibliográficos
Autores principales: Cheng, Daifeng, Chen, Langjie, Yi, Chunyan, Liang, Guangwen, Xu, Yijuan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4265777/
https://www.ncbi.nlm.nih.gov/pubmed/25502224
http://dx.doi.org/10.1038/srep07489
Descripción
Sumario:Reproduction is an important life process in insects; however, few studies have attempted to demonstrate the association between reproductive activity and energy metabolism. To address this problem, we focused on the reproductive changes in Bactrocera dorsalis males. We analyzed B. dorsalis male gene expression profiles during mating (DM), 3 h after mating (A3HM) and 12 h after mating (A12HM). Gene annotation and pathway analyses of differentially expressed genes show that galactose metabolism and the starch and sucrose metabolism pathway activities were significantly higher in A12HM group. Moreover, the maltase D gene was the most strongly up-regulated gene. The D-glucose levels were significantly higher in A12HM group. Maltase D expression level was significantly higher in males reared with sucrose. Body weights of the males reared with D-glucose and sucrose were significantly higher than those of the males reared with yeast extract. We observed more mated males from the groups fed sucrose and D-glucose than from those fed yeast extract. The D-glucose levels in individual males were highest at 18:00 h, when flies exhibit the most active mating behavior. This study shows that the maltase D gene and D-glucose are the critical gene and substrate, respectively, in male B. dorsalis mating process.