Cargando…

Functional allocation of synaptic contacts in microcircuits from rods via rod bipolar to AII amacrine cells in the mouse retina

Retinal microcircuits for night vision at the absolute threshold are required to relay a single-photon rod signal reliably to ganglion cells via rod bipolar (RB) cells and AII amacrine cells. To assess the noise reduction of intercellular signal transmission in this rod-specific pathway, we quantifi...

Descripción completa

Detalles Bibliográficos
Autores principales: Tsukamoto, Yoshihiko, Omi, Naoko
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BlackWell Publishing Ltd 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4265793/
https://www.ncbi.nlm.nih.gov/pubmed/23749582
http://dx.doi.org/10.1002/cne.23370
_version_ 1782348943822159872
author Tsukamoto, Yoshihiko
Omi, Naoko
author_facet Tsukamoto, Yoshihiko
Omi, Naoko
author_sort Tsukamoto, Yoshihiko
collection PubMed
description Retinal microcircuits for night vision at the absolute threshold are required to relay a single-photon rod signal reliably to ganglion cells via rod bipolar (RB) cells and AII amacrine cells. To assess the noise reduction of intercellular signal transmission in this rod-specific pathway, we quantified its synaptic connectivity by 3D reconstruction of a series of electron micrographs. In most cases (94%), each rod made ribbon synaptic contacts onto two adjacent RB cells. Conversely, each RB cell was contacted by 25 rods. Each RB axon terminal contacted four or five AII amacrine cells via 53 ribbon synapses. Thus, the signal from one rod may be represented as 106 replicates at two RB axons. Moreover, the two adjacent RB cells contacted two to four AII amacrine cells in common, where the signals relayed by two RB cells were reunited. In more detail, over 50% of each RB output was directed predominantly to a single, preferred AII amacrine cell, although each RB cell also separately contacted another one to three AII amacrine cells. Most of the replicate signals at two RB axons were collected on a few AII amacrine cells via reunions, dominant connections, and electrical coupling by AII–AII gap junctions. Thus the original signal may be reliably represented by signal amplification with focal accumulation without gathering unnecessary noise from a wide surrounding area. This allocation of RB–AII synaptic contacts may serve as the structural basis for the physiological properties of the AII single-photon response that include high amplification, local adaptation, and regenerative acceleration. J. Comp. Neurol. 521:3541-3555, 2013. © 2013 Wiley Periodicals, Inc.
format Online
Article
Text
id pubmed-4265793
institution National Center for Biotechnology Information
language English
publishDate 2013
publisher BlackWell Publishing Ltd
record_format MEDLINE/PubMed
spelling pubmed-42657932014-12-31 Functional allocation of synaptic contacts in microcircuits from rods via rod bipolar to AII amacrine cells in the mouse retina Tsukamoto, Yoshihiko Omi, Naoko J Comp Neurol Research Articles Retinal microcircuits for night vision at the absolute threshold are required to relay a single-photon rod signal reliably to ganglion cells via rod bipolar (RB) cells and AII amacrine cells. To assess the noise reduction of intercellular signal transmission in this rod-specific pathway, we quantified its synaptic connectivity by 3D reconstruction of a series of electron micrographs. In most cases (94%), each rod made ribbon synaptic contacts onto two adjacent RB cells. Conversely, each RB cell was contacted by 25 rods. Each RB axon terminal contacted four or five AII amacrine cells via 53 ribbon synapses. Thus, the signal from one rod may be represented as 106 replicates at two RB axons. Moreover, the two adjacent RB cells contacted two to four AII amacrine cells in common, where the signals relayed by two RB cells were reunited. In more detail, over 50% of each RB output was directed predominantly to a single, preferred AII amacrine cell, although each RB cell also separately contacted another one to three AII amacrine cells. Most of the replicate signals at two RB axons were collected on a few AII amacrine cells via reunions, dominant connections, and electrical coupling by AII–AII gap junctions. Thus the original signal may be reliably represented by signal amplification with focal accumulation without gathering unnecessary noise from a wide surrounding area. This allocation of RB–AII synaptic contacts may serve as the structural basis for the physiological properties of the AII single-photon response that include high amplification, local adaptation, and regenerative acceleration. J. Comp. Neurol. 521:3541-3555, 2013. © 2013 Wiley Periodicals, Inc. BlackWell Publishing Ltd 2013-10 2013-08-23 /pmc/articles/PMC4265793/ /pubmed/23749582 http://dx.doi.org/10.1002/cne.23370 Text en Copyright © 2013 Wiley Periodicals, Inc. http://creativecommons.org/licenses/by-nc-nd/3.0/ This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
spellingShingle Research Articles
Tsukamoto, Yoshihiko
Omi, Naoko
Functional allocation of synaptic contacts in microcircuits from rods via rod bipolar to AII amacrine cells in the mouse retina
title Functional allocation of synaptic contacts in microcircuits from rods via rod bipolar to AII amacrine cells in the mouse retina
title_full Functional allocation of synaptic contacts in microcircuits from rods via rod bipolar to AII amacrine cells in the mouse retina
title_fullStr Functional allocation of synaptic contacts in microcircuits from rods via rod bipolar to AII amacrine cells in the mouse retina
title_full_unstemmed Functional allocation of synaptic contacts in microcircuits from rods via rod bipolar to AII amacrine cells in the mouse retina
title_short Functional allocation of synaptic contacts in microcircuits from rods via rod bipolar to AII amacrine cells in the mouse retina
title_sort functional allocation of synaptic contacts in microcircuits from rods via rod bipolar to aii amacrine cells in the mouse retina
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4265793/
https://www.ncbi.nlm.nih.gov/pubmed/23749582
http://dx.doi.org/10.1002/cne.23370
work_keys_str_mv AT tsukamotoyoshihiko functionalallocationofsynapticcontactsinmicrocircuitsfromrodsviarodbipolartoaiiamacrinecellsinthemouseretina
AT ominaoko functionalallocationofsynapticcontactsinmicrocircuitsfromrodsviarodbipolartoaiiamacrinecellsinthemouseretina