Cargando…
Unsupervised discrimination of patterns in spiking neural networks with excitatory and inhibitory synaptic plasticity
A spiking neural network model is described for learning to discriminate among spatial patterns in an unsupervised manner. The network anatomy consists of source neurons that are activated by external inputs, a reservoir that resembles a generic cortical layer with an excitatory-inhibitory (EI) netw...
Autores principales: | Srinivasa, Narayan, Cho, Youngkwan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4266024/ https://www.ncbi.nlm.nih.gov/pubmed/25566045 http://dx.doi.org/10.3389/fncom.2014.00159 |
Ejemplares similares
-
Stable learning of functional maps in self-organizing spiking neural networks with continuous synaptic plasticity
por: Srinivasa, Narayan, et al.
Publicado: (2013) -
Non-linear Memristive Synaptic Dynamics for Efficient Unsupervised Learning in Spiking Neural Networks
por: Brivio, Stefano, et al.
Publicado: (2021) -
Information-Theoretic Intrinsic Plasticity for Online Unsupervised Learning in Spiking Neural Networks
por: Zhang, Wenrui, et al.
Publicado: (2019) -
Inhibitory synaptic plasticity: spike timing-dependence and putative network function
por: Vogels, T. P., et al.
Publicado: (2013) -
Meta-SpikePropamine: learning to learn with synaptic plasticity in spiking neural networks
por: Schmidgall, Samuel, et al.
Publicado: (2023)