Cargando…
ordinalgmifs: An R Package for Ordinal Regression in High-dimensional Data Settings
High-throughput genomic assays are performed using tissue samples with the goal of classifying the samples as normal < pre-malignant < malignant or by stage of cancer using a small set of molecular features. In such cases, molecular features monotonically associated with the ordinal response m...
Autores principales: | Archer, Kellie J, Hou, Jiayi, Zhou, Qing, Ferber, Kyle, Layne, John G, Gentry, Amanda E |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Libertas Academica
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4266195/ https://www.ncbi.nlm.nih.gov/pubmed/25574124 http://dx.doi.org/10.4137/CIN.S20806 |
Ejemplares similares
-
Penalized Ordinal Regression Methods for Predicting Stage of Cancer in High-Dimensional Covariate Spaces
por: Gentry, Amanda Elswick, et al.
Publicado: (2015) -
ordinalbayes: Fitting Ordinal Bayesian Regression Models to High-Dimensional Data Using R
por: Archer, Kellie J., et al.
Publicado: (2022) -
Modeling Discrete Survival Time Using Genomic Feature Data
por: Ferber, Kyle, et al.
Publicado: (2015) -
Variant Set Enrichment: an R package to identify disease-associated functional genomic regions
por: Ahmed, Musaddeque, et al.
Publicado: (2017) -
Bayesian variable selection for high-dimensional data with an ordinal response: identifying genes associated with prognostic risk group in acute myeloid leukemia
por: Zhang, Yiran, et al.
Publicado: (2021)