Cargando…
Ultrastable cellulosome-adhesion complex tightens under load
Challenging environments have guided nature in the development of ultrastable protein complexes. Specialized bacteria produce discrete multi-component protein networks called cellulosomes to effectively digest lignocellulosic biomass. While network assembly is enabled by protein interactions with co...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4266597/ https://www.ncbi.nlm.nih.gov/pubmed/25482395 http://dx.doi.org/10.1038/ncomms6635 |
_version_ | 1782349031559659520 |
---|---|
author | Schoeler, Constantin Malinowska, Klara H. Bernardi, Rafael C. Milles, Lukas F. Jobst, Markus A. Durner, Ellis Ott, Wolfgang Fried, Daniel B. Bayer, Edward A. Schulten, Klaus Gaub, Hermann E. Nash, Michael A. |
author_facet | Schoeler, Constantin Malinowska, Klara H. Bernardi, Rafael C. Milles, Lukas F. Jobst, Markus A. Durner, Ellis Ott, Wolfgang Fried, Daniel B. Bayer, Edward A. Schulten, Klaus Gaub, Hermann E. Nash, Michael A. |
author_sort | Schoeler, Constantin |
collection | PubMed |
description | Challenging environments have guided nature in the development of ultrastable protein complexes. Specialized bacteria produce discrete multi-component protein networks called cellulosomes to effectively digest lignocellulosic biomass. While network assembly is enabled by protein interactions with commonplace affinities, we show that certain cellulosomal ligand–receptor interactions exhibit extreme resistance to applied force. Here, we characterize the ligand–receptor complex responsible for substrate anchoring in the Ruminococcus flavefaciens cellulosome using single-molecule force spectroscopy and steered molecular dynamics simulations. The complex withstands forces of 600–750 pN, making it one of the strongest bimolecular interactions reported, equivalent to half the mechanical strength of a covalent bond. Our findings demonstrate force activation and inter-domain stabilization of the complex, and suggest that certain network components serve as mechanical effectors for maintaining network integrity. This detailed understanding of cellulosomal network components may help in the development of biocatalysts for production of fuels and chemicals from renewable plant-derived biomass. |
format | Online Article Text |
id | pubmed-4266597 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | Nature Publishing Group |
record_format | MEDLINE/PubMed |
spelling | pubmed-42665972014-12-29 Ultrastable cellulosome-adhesion complex tightens under load Schoeler, Constantin Malinowska, Klara H. Bernardi, Rafael C. Milles, Lukas F. Jobst, Markus A. Durner, Ellis Ott, Wolfgang Fried, Daniel B. Bayer, Edward A. Schulten, Klaus Gaub, Hermann E. Nash, Michael A. Nat Commun Article Challenging environments have guided nature in the development of ultrastable protein complexes. Specialized bacteria produce discrete multi-component protein networks called cellulosomes to effectively digest lignocellulosic biomass. While network assembly is enabled by protein interactions with commonplace affinities, we show that certain cellulosomal ligand–receptor interactions exhibit extreme resistance to applied force. Here, we characterize the ligand–receptor complex responsible for substrate anchoring in the Ruminococcus flavefaciens cellulosome using single-molecule force spectroscopy and steered molecular dynamics simulations. The complex withstands forces of 600–750 pN, making it one of the strongest bimolecular interactions reported, equivalent to half the mechanical strength of a covalent bond. Our findings demonstrate force activation and inter-domain stabilization of the complex, and suggest that certain network components serve as mechanical effectors for maintaining network integrity. This detailed understanding of cellulosomal network components may help in the development of biocatalysts for production of fuels and chemicals from renewable plant-derived biomass. Nature Publishing Group 2014-12-08 /pmc/articles/PMC4266597/ /pubmed/25482395 http://dx.doi.org/10.1038/ncomms6635 Text en Copyright © 2014, Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved. http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ |
spellingShingle | Article Schoeler, Constantin Malinowska, Klara H. Bernardi, Rafael C. Milles, Lukas F. Jobst, Markus A. Durner, Ellis Ott, Wolfgang Fried, Daniel B. Bayer, Edward A. Schulten, Klaus Gaub, Hermann E. Nash, Michael A. Ultrastable cellulosome-adhesion complex tightens under load |
title | Ultrastable cellulosome-adhesion complex tightens under load |
title_full | Ultrastable cellulosome-adhesion complex tightens under load |
title_fullStr | Ultrastable cellulosome-adhesion complex tightens under load |
title_full_unstemmed | Ultrastable cellulosome-adhesion complex tightens under load |
title_short | Ultrastable cellulosome-adhesion complex tightens under load |
title_sort | ultrastable cellulosome-adhesion complex tightens under load |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4266597/ https://www.ncbi.nlm.nih.gov/pubmed/25482395 http://dx.doi.org/10.1038/ncomms6635 |
work_keys_str_mv | AT schoelerconstantin ultrastablecellulosomeadhesioncomplextightensunderload AT malinowskaklarah ultrastablecellulosomeadhesioncomplextightensunderload AT bernardirafaelc ultrastablecellulosomeadhesioncomplextightensunderload AT milleslukasf ultrastablecellulosomeadhesioncomplextightensunderload AT jobstmarkusa ultrastablecellulosomeadhesioncomplextightensunderload AT durnerellis ultrastablecellulosomeadhesioncomplextightensunderload AT ottwolfgang ultrastablecellulosomeadhesioncomplextightensunderload AT frieddanielb ultrastablecellulosomeadhesioncomplextightensunderload AT bayeredwarda ultrastablecellulosomeadhesioncomplextightensunderload AT schultenklaus ultrastablecellulosomeadhesioncomplextightensunderload AT gaubhermanne ultrastablecellulosomeadhesioncomplextightensunderload AT nashmichaela ultrastablecellulosomeadhesioncomplextightensunderload |