Cargando…

Ultrastable cellulosome-adhesion complex tightens under load

Challenging environments have guided nature in the development of ultrastable protein complexes. Specialized bacteria produce discrete multi-component protein networks called cellulosomes to effectively digest lignocellulosic biomass. While network assembly is enabled by protein interactions with co...

Descripción completa

Detalles Bibliográficos
Autores principales: Schoeler, Constantin, Malinowska, Klara H., Bernardi, Rafael C., Milles, Lukas F., Jobst, Markus A., Durner, Ellis, Ott, Wolfgang, Fried, Daniel B., Bayer, Edward A., Schulten, Klaus, Gaub, Hermann E., Nash, Michael A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4266597/
https://www.ncbi.nlm.nih.gov/pubmed/25482395
http://dx.doi.org/10.1038/ncomms6635
_version_ 1782349031559659520
author Schoeler, Constantin
Malinowska, Klara H.
Bernardi, Rafael C.
Milles, Lukas F.
Jobst, Markus A.
Durner, Ellis
Ott, Wolfgang
Fried, Daniel B.
Bayer, Edward A.
Schulten, Klaus
Gaub, Hermann E.
Nash, Michael A.
author_facet Schoeler, Constantin
Malinowska, Klara H.
Bernardi, Rafael C.
Milles, Lukas F.
Jobst, Markus A.
Durner, Ellis
Ott, Wolfgang
Fried, Daniel B.
Bayer, Edward A.
Schulten, Klaus
Gaub, Hermann E.
Nash, Michael A.
author_sort Schoeler, Constantin
collection PubMed
description Challenging environments have guided nature in the development of ultrastable protein complexes. Specialized bacteria produce discrete multi-component protein networks called cellulosomes to effectively digest lignocellulosic biomass. While network assembly is enabled by protein interactions with commonplace affinities, we show that certain cellulosomal ligand–receptor interactions exhibit extreme resistance to applied force. Here, we characterize the ligand–receptor complex responsible for substrate anchoring in the Ruminococcus flavefaciens cellulosome using single-molecule force spectroscopy and steered molecular dynamics simulations. The complex withstands forces of 600–750 pN, making it one of the strongest bimolecular interactions reported, equivalent to half the mechanical strength of a covalent bond. Our findings demonstrate force activation and inter-domain stabilization of the complex, and suggest that certain network components serve as mechanical effectors for maintaining network integrity. This detailed understanding of cellulosomal network components may help in the development of biocatalysts for production of fuels and chemicals from renewable plant-derived biomass.
format Online
Article
Text
id pubmed-4266597
institution National Center for Biotechnology Information
language English
publishDate 2014
publisher Nature Publishing Group
record_format MEDLINE/PubMed
spelling pubmed-42665972014-12-29 Ultrastable cellulosome-adhesion complex tightens under load Schoeler, Constantin Malinowska, Klara H. Bernardi, Rafael C. Milles, Lukas F. Jobst, Markus A. Durner, Ellis Ott, Wolfgang Fried, Daniel B. Bayer, Edward A. Schulten, Klaus Gaub, Hermann E. Nash, Michael A. Nat Commun Article Challenging environments have guided nature in the development of ultrastable protein complexes. Specialized bacteria produce discrete multi-component protein networks called cellulosomes to effectively digest lignocellulosic biomass. While network assembly is enabled by protein interactions with commonplace affinities, we show that certain cellulosomal ligand–receptor interactions exhibit extreme resistance to applied force. Here, we characterize the ligand–receptor complex responsible for substrate anchoring in the Ruminococcus flavefaciens cellulosome using single-molecule force spectroscopy and steered molecular dynamics simulations. The complex withstands forces of 600–750 pN, making it one of the strongest bimolecular interactions reported, equivalent to half the mechanical strength of a covalent bond. Our findings demonstrate force activation and inter-domain stabilization of the complex, and suggest that certain network components serve as mechanical effectors for maintaining network integrity. This detailed understanding of cellulosomal network components may help in the development of biocatalysts for production of fuels and chemicals from renewable plant-derived biomass. Nature Publishing Group 2014-12-08 /pmc/articles/PMC4266597/ /pubmed/25482395 http://dx.doi.org/10.1038/ncomms6635 Text en Copyright © 2014, Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved. http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/
spellingShingle Article
Schoeler, Constantin
Malinowska, Klara H.
Bernardi, Rafael C.
Milles, Lukas F.
Jobst, Markus A.
Durner, Ellis
Ott, Wolfgang
Fried, Daniel B.
Bayer, Edward A.
Schulten, Klaus
Gaub, Hermann E.
Nash, Michael A.
Ultrastable cellulosome-adhesion complex tightens under load
title Ultrastable cellulosome-adhesion complex tightens under load
title_full Ultrastable cellulosome-adhesion complex tightens under load
title_fullStr Ultrastable cellulosome-adhesion complex tightens under load
title_full_unstemmed Ultrastable cellulosome-adhesion complex tightens under load
title_short Ultrastable cellulosome-adhesion complex tightens under load
title_sort ultrastable cellulosome-adhesion complex tightens under load
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4266597/
https://www.ncbi.nlm.nih.gov/pubmed/25482395
http://dx.doi.org/10.1038/ncomms6635
work_keys_str_mv AT schoelerconstantin ultrastablecellulosomeadhesioncomplextightensunderload
AT malinowskaklarah ultrastablecellulosomeadhesioncomplextightensunderload
AT bernardirafaelc ultrastablecellulosomeadhesioncomplextightensunderload
AT milleslukasf ultrastablecellulosomeadhesioncomplextightensunderload
AT jobstmarkusa ultrastablecellulosomeadhesioncomplextightensunderload
AT durnerellis ultrastablecellulosomeadhesioncomplextightensunderload
AT ottwolfgang ultrastablecellulosomeadhesioncomplextightensunderload
AT frieddanielb ultrastablecellulosomeadhesioncomplextightensunderload
AT bayeredwarda ultrastablecellulosomeadhesioncomplextightensunderload
AT schultenklaus ultrastablecellulosomeadhesioncomplextightensunderload
AT gaubhermanne ultrastablecellulosomeadhesioncomplextightensunderload
AT nashmichaela ultrastablecellulosomeadhesioncomplextightensunderload