Cargando…

An Integrative Computational Approach for Prioritization of Genomic Variants

An essential step in the discovery of molecular mechanisms contributing to disease phenotypes and efficient experimental planning is the development of weighted hypotheses that estimate the functional effects of sequence variants discovered by high-throughput genomics. With the increasing specializa...

Descripción completa

Detalles Bibliográficos
Autores principales: Dubchak, Inna, Balasubramanian, Sandhya, Wang, Sheng, Meyden, Cem, Sulakhe, Dinanath, Poliakov, Alexander, Börnigen, Daniela, Xie, Bingqing, Taylor, Andrew, Ma, Jianzhu, Paciorkowski, Alex R., Mirzaa, Ghayda M., Dave, Paul, Agam, Gady, Xu, Jinbo, Al-Gazali, Lihadh, Mason, Christopher E., Ross, M. Elizabeth, Maltsev, Natalia, Gilliam, T. Conrad
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4266634/
https://www.ncbi.nlm.nih.gov/pubmed/25506935
http://dx.doi.org/10.1371/journal.pone.0114903
_version_ 1782349036835045376
author Dubchak, Inna
Balasubramanian, Sandhya
Wang, Sheng
Meyden, Cem
Sulakhe, Dinanath
Poliakov, Alexander
Börnigen, Daniela
Xie, Bingqing
Taylor, Andrew
Ma, Jianzhu
Paciorkowski, Alex R.
Mirzaa, Ghayda M.
Dave, Paul
Agam, Gady
Xu, Jinbo
Al-Gazali, Lihadh
Mason, Christopher E.
Ross, M. Elizabeth
Maltsev, Natalia
Gilliam, T. Conrad
author_facet Dubchak, Inna
Balasubramanian, Sandhya
Wang, Sheng
Meyden, Cem
Sulakhe, Dinanath
Poliakov, Alexander
Börnigen, Daniela
Xie, Bingqing
Taylor, Andrew
Ma, Jianzhu
Paciorkowski, Alex R.
Mirzaa, Ghayda M.
Dave, Paul
Agam, Gady
Xu, Jinbo
Al-Gazali, Lihadh
Mason, Christopher E.
Ross, M. Elizabeth
Maltsev, Natalia
Gilliam, T. Conrad
author_sort Dubchak, Inna
collection PubMed
description An essential step in the discovery of molecular mechanisms contributing to disease phenotypes and efficient experimental planning is the development of weighted hypotheses that estimate the functional effects of sequence variants discovered by high-throughput genomics. With the increasing specialization of the bioinformatics resources, creating analytical workflows that seamlessly integrate data and bioinformatics tools developed by multiple groups becomes inevitable. Here we present a case study of a use of the distributed analytical environment integrating four complementary specialized resources, namely the Lynx platform, VISTA RViewer, the Developmental Brain Disorders Database (DBDB), and the RaptorX server, for the identification of high-confidence candidate genes contributing to pathogenesis of spina bifida. The analysis resulted in prediction and validation of deleterious mutations in the SLC19A placental transporter in mothers of the affected children that causes narrowing of the outlet channel and therefore leads to the reduced folate permeation rate. The described approach also enabled correct identification of several genes, previously shown to contribute to pathogenesis of spina bifida, and suggestion of additional genes for experimental validations. The study demonstrates that the seamless integration of bioinformatics resources enables fast and efficient prioritization and characterization of genomic factors and molecular networks contributing to the phenotypes of interest.
format Online
Article
Text
id pubmed-4266634
institution National Center for Biotechnology Information
language English
publishDate 2014
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-42666342014-12-26 An Integrative Computational Approach for Prioritization of Genomic Variants Dubchak, Inna Balasubramanian, Sandhya Wang, Sheng Meyden, Cem Sulakhe, Dinanath Poliakov, Alexander Börnigen, Daniela Xie, Bingqing Taylor, Andrew Ma, Jianzhu Paciorkowski, Alex R. Mirzaa, Ghayda M. Dave, Paul Agam, Gady Xu, Jinbo Al-Gazali, Lihadh Mason, Christopher E. Ross, M. Elizabeth Maltsev, Natalia Gilliam, T. Conrad PLoS One Research Article An essential step in the discovery of molecular mechanisms contributing to disease phenotypes and efficient experimental planning is the development of weighted hypotheses that estimate the functional effects of sequence variants discovered by high-throughput genomics. With the increasing specialization of the bioinformatics resources, creating analytical workflows that seamlessly integrate data and bioinformatics tools developed by multiple groups becomes inevitable. Here we present a case study of a use of the distributed analytical environment integrating four complementary specialized resources, namely the Lynx platform, VISTA RViewer, the Developmental Brain Disorders Database (DBDB), and the RaptorX server, for the identification of high-confidence candidate genes contributing to pathogenesis of spina bifida. The analysis resulted in prediction and validation of deleterious mutations in the SLC19A placental transporter in mothers of the affected children that causes narrowing of the outlet channel and therefore leads to the reduced folate permeation rate. The described approach also enabled correct identification of several genes, previously shown to contribute to pathogenesis of spina bifida, and suggestion of additional genes for experimental validations. The study demonstrates that the seamless integration of bioinformatics resources enables fast and efficient prioritization and characterization of genomic factors and molecular networks contributing to the phenotypes of interest. Public Library of Science 2014-12-15 /pmc/articles/PMC4266634/ /pubmed/25506935 http://dx.doi.org/10.1371/journal.pone.0114903 Text en © 2014 Dubchak et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
spellingShingle Research Article
Dubchak, Inna
Balasubramanian, Sandhya
Wang, Sheng
Meyden, Cem
Sulakhe, Dinanath
Poliakov, Alexander
Börnigen, Daniela
Xie, Bingqing
Taylor, Andrew
Ma, Jianzhu
Paciorkowski, Alex R.
Mirzaa, Ghayda M.
Dave, Paul
Agam, Gady
Xu, Jinbo
Al-Gazali, Lihadh
Mason, Christopher E.
Ross, M. Elizabeth
Maltsev, Natalia
Gilliam, T. Conrad
An Integrative Computational Approach for Prioritization of Genomic Variants
title An Integrative Computational Approach for Prioritization of Genomic Variants
title_full An Integrative Computational Approach for Prioritization of Genomic Variants
title_fullStr An Integrative Computational Approach for Prioritization of Genomic Variants
title_full_unstemmed An Integrative Computational Approach for Prioritization of Genomic Variants
title_short An Integrative Computational Approach for Prioritization of Genomic Variants
title_sort integrative computational approach for prioritization of genomic variants
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4266634/
https://www.ncbi.nlm.nih.gov/pubmed/25506935
http://dx.doi.org/10.1371/journal.pone.0114903
work_keys_str_mv AT dubchakinna anintegrativecomputationalapproachforprioritizationofgenomicvariants
AT balasubramaniansandhya anintegrativecomputationalapproachforprioritizationofgenomicvariants
AT wangsheng anintegrativecomputationalapproachforprioritizationofgenomicvariants
AT meydencem anintegrativecomputationalapproachforprioritizationofgenomicvariants
AT sulakhedinanath anintegrativecomputationalapproachforprioritizationofgenomicvariants
AT poliakovalexander anintegrativecomputationalapproachforprioritizationofgenomicvariants
AT bornigendaniela anintegrativecomputationalapproachforprioritizationofgenomicvariants
AT xiebingqing anintegrativecomputationalapproachforprioritizationofgenomicvariants
AT taylorandrew anintegrativecomputationalapproachforprioritizationofgenomicvariants
AT majianzhu anintegrativecomputationalapproachforprioritizationofgenomicvariants
AT paciorkowskialexr anintegrativecomputationalapproachforprioritizationofgenomicvariants
AT mirzaaghaydam anintegrativecomputationalapproachforprioritizationofgenomicvariants
AT davepaul anintegrativecomputationalapproachforprioritizationofgenomicvariants
AT agamgady anintegrativecomputationalapproachforprioritizationofgenomicvariants
AT xujinbo anintegrativecomputationalapproachforprioritizationofgenomicvariants
AT algazalilihadh anintegrativecomputationalapproachforprioritizationofgenomicvariants
AT masonchristophere anintegrativecomputationalapproachforprioritizationofgenomicvariants
AT rossmelizabeth anintegrativecomputationalapproachforprioritizationofgenomicvariants
AT maltsevnatalia anintegrativecomputationalapproachforprioritizationofgenomicvariants
AT gilliamtconrad anintegrativecomputationalapproachforprioritizationofgenomicvariants
AT dubchakinna integrativecomputationalapproachforprioritizationofgenomicvariants
AT balasubramaniansandhya integrativecomputationalapproachforprioritizationofgenomicvariants
AT wangsheng integrativecomputationalapproachforprioritizationofgenomicvariants
AT meydencem integrativecomputationalapproachforprioritizationofgenomicvariants
AT sulakhedinanath integrativecomputationalapproachforprioritizationofgenomicvariants
AT poliakovalexander integrativecomputationalapproachforprioritizationofgenomicvariants
AT bornigendaniela integrativecomputationalapproachforprioritizationofgenomicvariants
AT xiebingqing integrativecomputationalapproachforprioritizationofgenomicvariants
AT taylorandrew integrativecomputationalapproachforprioritizationofgenomicvariants
AT majianzhu integrativecomputationalapproachforprioritizationofgenomicvariants
AT paciorkowskialexr integrativecomputationalapproachforprioritizationofgenomicvariants
AT mirzaaghaydam integrativecomputationalapproachforprioritizationofgenomicvariants
AT davepaul integrativecomputationalapproachforprioritizationofgenomicvariants
AT agamgady integrativecomputationalapproachforprioritizationofgenomicvariants
AT xujinbo integrativecomputationalapproachforprioritizationofgenomicvariants
AT algazalilihadh integrativecomputationalapproachforprioritizationofgenomicvariants
AT masonchristophere integrativecomputationalapproachforprioritizationofgenomicvariants
AT rossmelizabeth integrativecomputationalapproachforprioritizationofgenomicvariants
AT maltsevnatalia integrativecomputationalapproachforprioritizationofgenomicvariants
AT gilliamtconrad integrativecomputationalapproachforprioritizationofgenomicvariants