Cargando…
High-Throughput Sequencing of MicroRNA Transcriptome and Expression Assay in the Sturgeon, Acipenser schrenckii
Sturgeons are considered as living fossils and have very high evolutionary, economical and conservation values. The multiploidy of sturgeon that has been caused by chromosome duplication may lead to the emergence of new microRNAs (miRNAs) involved in the ploidy and physiological processes. In the pr...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4266654/ https://www.ncbi.nlm.nih.gov/pubmed/25506840 http://dx.doi.org/10.1371/journal.pone.0115251 |
Sumario: | Sturgeons are considered as living fossils and have very high evolutionary, economical and conservation values. The multiploidy of sturgeon that has been caused by chromosome duplication may lead to the emergence of new microRNAs (miRNAs) involved in the ploidy and physiological processes. In the present study, we performed the first sturgeon miRNAs analysis by RNA-seq high-throughput sequencing combined with expression assay of microarray and real-time PCR, and aimed to discover the sturgeon-specific miRNAs, confirm the expressed pattern of miRNAs and illustrate the potential role of miRNAs-targets on sturgeon biological processes. A total of 103 miRNAs were identified, including 58 miRNAs with strongly detected signals (signal >500 and P≤0.01), which were detected by microarray. Real-time PCR assay supported the expression pattern obtained by microarray. Moreover, co-expression of 21 miRNAs in all five tissues and tissue-specific expression of 16 miRNAs implied the crucial and particular function of them in sturgeon physiological processes. Target gene prediction, especially the enriched functional gene groups (369 GO terms) and pathways (37 KEGG) regulated by 58 miRNAs (P<0.05), illustrated the interaction of miRNAs and putative mRNAs, and also the potential mechanism involved in these biological processes. Our new findings of sturgeon miRNAs expand the public database of transcriptome information for this species, contribute to our understanding of sturgeon biology, and also provide invaluable data that may be applied in sturgeon breeding. |
---|