Cargando…
Inferring ancestral states without assuming neutrality or gradualism using a stable model of continuous character evolution
BACKGROUND: The value of a continuous character evolving on a phylogenetic tree is commonly modelled as the location of a particle moving under one-dimensional Brownian motion with constant rate. The Brownian motion model is best suited to characters evolving under neutral drift or tracking an optim...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4266906/ https://www.ncbi.nlm.nih.gov/pubmed/25427971 http://dx.doi.org/10.1186/s12862-014-0226-8 |
Sumario: | BACKGROUND: The value of a continuous character evolving on a phylogenetic tree is commonly modelled as the location of a particle moving under one-dimensional Brownian motion with constant rate. The Brownian motion model is best suited to characters evolving under neutral drift or tracking an optimum that drifts neutrally. We present a generalization of the Brownian motion model which relaxes assumptions of neutrality and gradualism by considering increments to evolving characters to be drawn from a heavy-tailed stable distribution (of which the normal distribution is a specialized form). RESULTS: We describe Markov chain Monte Carlo methods for fitting the model to biological data paying special attention to ancestral state reconstruction, and study the performance of the model in comparison with a selection of existing comparative methods, using both simulated data and a database of body mass in 1,679 mammalian species. We discuss hypothesis testing and model selection. The stable model outperforms Brownian and Ornstein-Uhlenbeck approaches under simulations in which traits evolve with occasional large “jumps” in their value, but does not perform markedly worse for traits evolving under a truly Brownian process. CONCLUSIONS: The stable model is well suited to a stochastic process with a volatile rate of change in which biological characters undergo a mixture of neutral drift and occasional evolutionary events of large magnitude. |
---|