Cargando…

Forecasting ESKAPE infections through a time-varying auto-adaptive algorithm using laboratory-based surveillance data

BACKGROUND: Mathematical or statistical tools are capable to provide a valid help to improve surveillance systems for healthcare and non-healthcare-associated bacterial infections. The aim of this work is to evaluate the time-varying auto-adaptive (TVA) algorithm-based use of clinical microbiology l...

Descripción completa

Detalles Bibliográficos
Autores principales: Ballarin, Antonio, Posteraro, Brunella, Demartis, Giuseppe, Gervasi, Simona, Panzarella, Fabrizio, Torelli, Riccardo, Paroni Sterbini, Francesco, Morandotti, Grazia, Posteraro, Patrizia, Ricciardi, Walter, Gervasi Vidal, Kristian A, Sanguinetti, Maurizio
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4266976/
https://www.ncbi.nlm.nih.gov/pubmed/25480675
http://dx.doi.org/10.1186/s12879-014-0634-9
Descripción
Sumario:BACKGROUND: Mathematical or statistical tools are capable to provide a valid help to improve surveillance systems for healthcare and non-healthcare-associated bacterial infections. The aim of this work is to evaluate the time-varying auto-adaptive (TVA) algorithm-based use of clinical microbiology laboratory database to forecast medically important drug-resistant bacterial infections. METHODS: Using TVA algorithm, six distinct time series were modelled, each one representing the number of episodes per single ‘ESKAPE’ (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa and Enterobacter species) infecting pathogen, that had occurred monthly between 2002 and 2011 calendar years at the Università Cattolica del Sacro Cuore general hospital. RESULTS: Monthly moving averaged numbers of observed and forecasted ESKAPE infectious episodes were found to show a complete overlapping of their respective smoothed time series curves. Overall good forecast accuracy was observed, with percentages ranging from 82.14% for E. faecium infections to 90.36% for S. aureus infections. CONCLUSIONS: Our approach may regularly provide physicians with forecasted bacterial infection rates to alert them about the spread of antibiotic-resistant bacterial species, especially when clinical microbiological results of patients’ specimens are delayed. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12879-014-0634-9) contains supplementary material, which is available to authorized users.