Cargando…
A compound memristive synapse model for statistical learning through STDP in spiking neural networks
Memristors have recently emerged as promising circuit elements to mimic the function of biological synapses in neuromorphic computing. The fabrication of reliable nanoscale memristive synapses, that feature continuous conductance changes based on the timing of pre- and postsynaptic spikes, has howev...
Autores principales: | Bill, Johannes, Legenstein, Robert |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4267210/ https://www.ncbi.nlm.nih.gov/pubmed/25565943 http://dx.doi.org/10.3389/fnins.2014.00412 |
Ejemplares similares
-
Unsupervised learning in probabilistic neural networks with multi-state metal-oxide memristive synapses
por: Serb, Alexander, et al.
Publicado: (2016) -
Analog Memristive Synapse in Spiking Networks Implementing Unsupervised Learning
por: Covi, Erika, et al.
Publicado: (2016) -
STDP and STDP variations with memristors for spiking neuromorphic learning systems
por: Serrano-Gotarredona, T., et al.
Publicado: (2013) -
Synchronization in STDP-driven memristive neural networks with time-varying topology
por: Yamakou, Marius E., et al.
Publicado: (2023) -
Plasticity in memristive devices for spiking neural networks
por: Saïghi, Sylvain, et al.
Publicado: (2015)