Cargando…
Assessing and broadening genetic diversity of a rapeseed germplasm collection
Assessing the level of genetic diversity within a germplasm collection contributes to evaluating the potential for its utilization as a gene pool to improve the performance of cultivars. In this study, 45 high-quality simple sequence repeat (SSR) markers were screened and used to estimate the geneti...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Japanese Society of Breeding
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4267306/ https://www.ncbi.nlm.nih.gov/pubmed/25914586 http://dx.doi.org/10.1270/jsbbs.64.321 |
Sumario: | Assessing the level of genetic diversity within a germplasm collection contributes to evaluating the potential for its utilization as a gene pool to improve the performance of cultivars. In this study, 45 high-quality simple sequence repeat (SSR) markers were screened and used to estimate the genetic base of a world-wide collection of 248 rapeseed (Brassica napus) inbred lines. For the whole collection, the genetic diversity of A genome was higher than that of C genome. The genetic diversity of C genome for the semi-winter type was the lowest among the different germplasm types. Because B. oleracea is usually used to broaden the genetic diversity of C genome in rapeseed, we evaluated the potential of 25 wild B. oleracea lines. More allelic variations and a higher genetic diversity were observed in B. oleracea than in rapeseed. One B. oleracea line and one oilseed B. rapa line were used to generate a resynthesized Brassica napus line, which was then crossed with six semi-winter rapeseed cultivars to produce 7 F(1) hybrids. Not only the allele introgression but also mutations were observed in the hybrids, resulting in significant improvement of the genetic base. |
---|