Cargando…
Gene network inference using continuous time Bayesian networks: a comparative study and application to Th17 cell differentiation
BACKGROUND: Dynamic aspects of gene regulatory networks are typically investigated by measuring system variables at multiple time points. Current state-of-the-art computational approaches for reconstructing gene networks directly build on such data, making a strong assumption that the system evolves...
Autores principales: | Acerbi, Enzo, Zelante, Teresa, Narang, Vipin, Stella, Fabio |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4267461/ https://www.ncbi.nlm.nih.gov/pubmed/25495206 http://dx.doi.org/10.1186/s12859-014-0387-x |
Ejemplares similares
-
Continuous time Bayesian networks identify Prdm1 as a negative regulator of TH17 cell differentiation in humans
por: Acerbi, Enzo, et al.
Publicado: (2016) -
Modeling Approaches Reveal New Regulatory Networks in Aspergillus fumigatus Metabolism
por: Acerbi, Enzo, et al.
Publicado: (2020) -
Network Plasticity as Bayesian Inference
por: Kappel, David, et al.
Publicado: (2015) -
Inference of temporally varying Bayesian Networks
por: Thorne, Thomas, et al.
Publicado: (2012) -
Bayesian inference in ring attractor networks
por: Kutschireiter, Anna, et al.
Publicado: (2023)