Cargando…
Optimizing acceleration-based ethograms: the use of variable-time versus fixed-time segmentation
BACKGROUND: Animal-borne accelerometers measure body orientation and movement and can thus be used to classify animal behaviour. To univocally and automatically analyse the large volume of data generated, we need classification models. An important step in the process of classification is the segmen...
Autores principales: | Bom, Roeland A, Bouten, Willem, Piersma, Theunis, Oosterbeek, Kees, van Gils, Jan A |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4267607/ https://www.ncbi.nlm.nih.gov/pubmed/25520816 http://dx.doi.org/10.1186/2051-3933-2-6 |
Ejemplares similares
-
From Sensor Data to Animal Behaviour: An Oystercatcher Example
por: Shamoun-Baranes, Judy, et al.
Publicado: (2012) -
An evaluation of machine learning classifiers for next-generation, continuous-ethogram smart trackers
por: Yu, Hui, et al.
Publicado: (2021) -
Equine Discomfort Ethogram
por: Torcivia, Catherine, et al.
Publicado: (2021) -
Phenotype-limited distributions: short-billed birds move away during times that prey bury deeply
por: Duijns, Sjoerd, et al.
Publicado: (2015) -
Recommendations for Abnormal Behaviour Ethograms in Monkey Research
por: Polanco, Andrea, et al.
Publicado: (2021)