Cargando…

Differences of Starch Granule Distribution in Grains from Different Spikelet Positions in Winter Wheat

Wheat starch development is a complex process and is markedly difference by changes in spikelet spatial position. The present study deals with endosperm starch granule distribution and spatial position during filling development. The study was conducted with pure starch isolated from wheat (Triticum...

Descripción completa

Detalles Bibliográficos
Autores principales: Yu, Anling, Li, Yong, Ni, Yingli, Yang, Weibing, Yang, Dongqing, Cui, Zhengyong, Wang, Zhenlin, Yin, Yanping
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4267774/
https://www.ncbi.nlm.nih.gov/pubmed/25514032
http://dx.doi.org/10.1371/journal.pone.0114342
Descripción
Sumario:Wheat starch development is a complex process and is markedly difference by changes in spikelet spatial position. The present study deals with endosperm starch granule distribution and spatial position during filling development. The study was conducted with pure starch isolated from wheat (Triticum aestivum L.), Jimai20 and Shannong1391, at 7–35 days after anthesis (DAA). The results showed that grain number, spikelet weight and grain weight per spikelet in different spatial position showed parabolic changes. Upper spikelets had highest starch and amylose content followed by basal spikelets, then middle spikelets. The paper also suggested the volume percents of B-type and A-type granule in grain of middle spikelets were remarkably higher and lower than those of basal and upper spikelets, respectively. However, no significant difference occurred in the number percents of the two type granule. The ratio of amylase to amylopectin was positively correlated with the volume proportion of 22.8–42.8 µm, but was negatively related to the volume proportion of <9.9 µm. The results indicated that the formation and distribution of starch granules were affected significantly by spikelet position, and grains at upper and basal spikelet had the potential of increasing grain weight through increasing the volume of B-type granules.