Cargando…
Feasibility and Reproducibility of Echo Planar Spectroscopic Imaging on the Quantification of Hepatic Fat
OBJECTIVES: 1H-MRS is widely regarded as the most accurate noninvasive method to quantify hepatic fat content (HFC). When practical period of breath holding, and acquisition of HFC over multiple liver areas is considered, a fast MR spectroscopic imaging technique is desired. The aim of this study is...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4267781/ https://www.ncbi.nlm.nih.gov/pubmed/25514348 http://dx.doi.org/10.1371/journal.pone.0114436 |
_version_ | 1782349194590158848 |
---|---|
author | Lin, Yi-Ru Chiu, Jian-Jia Tsai, Shang-Yueh |
author_facet | Lin, Yi-Ru Chiu, Jian-Jia Tsai, Shang-Yueh |
author_sort | Lin, Yi-Ru |
collection | PubMed |
description | OBJECTIVES: 1H-MRS is widely regarded as the most accurate noninvasive method to quantify hepatic fat content (HFC). When practical period of breath holding, and acquisition of HFC over multiple liver areas is considered, a fast MR spectroscopic imaging technique is desired. The aim of this study is to examine the feasibility and reproducibility of echo planar spectroscopic imaging (EPSI) on the quantification of HFC in subject with various HFCs. METHODS: Twenty two volunteers were examined in a 3T MR system. The acquisition time of proposed EPSI protocol was 18 seconds. The EPSI scans were repeated 8 times for each subject to test reproducibility. The peak of water and individual peaks of fat including methyl, methylene, and allylic peaks at 0.9, 1.3, and 2.0 ppm were fitted. Calculated amount of water and fat content were corrected for T2 relaxation. The total HFC was defined as the combination of individual peaks. Standard deviation (SD), coefficient of variance (COV) and fitting reliability of HFC quantified by LCModel were calculated. RESULTS: Our results show that the SDs of total HFC for all subjects are less than 2.5%. Fitting reliability is mostly under 10% and positively correlates with COV. Subjects separated into three subgroups according to quantified total HFC show that improved fitting reliability and reproducibility can be achieved on subjects with higher total HFC. CONCLUSIONS: We have demonstrated feasibility of the proposed EPSI protocols on the quantification of HFC over a whole slice of liver with scan time in a single breath hold. |
format | Online Article Text |
id | pubmed-4267781 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-42677812014-12-26 Feasibility and Reproducibility of Echo Planar Spectroscopic Imaging on the Quantification of Hepatic Fat Lin, Yi-Ru Chiu, Jian-Jia Tsai, Shang-Yueh PLoS One Research Article OBJECTIVES: 1H-MRS is widely regarded as the most accurate noninvasive method to quantify hepatic fat content (HFC). When practical period of breath holding, and acquisition of HFC over multiple liver areas is considered, a fast MR spectroscopic imaging technique is desired. The aim of this study is to examine the feasibility and reproducibility of echo planar spectroscopic imaging (EPSI) on the quantification of HFC in subject with various HFCs. METHODS: Twenty two volunteers were examined in a 3T MR system. The acquisition time of proposed EPSI protocol was 18 seconds. The EPSI scans were repeated 8 times for each subject to test reproducibility. The peak of water and individual peaks of fat including methyl, methylene, and allylic peaks at 0.9, 1.3, and 2.0 ppm were fitted. Calculated amount of water and fat content were corrected for T2 relaxation. The total HFC was defined as the combination of individual peaks. Standard deviation (SD), coefficient of variance (COV) and fitting reliability of HFC quantified by LCModel were calculated. RESULTS: Our results show that the SDs of total HFC for all subjects are less than 2.5%. Fitting reliability is mostly under 10% and positively correlates with COV. Subjects separated into three subgroups according to quantified total HFC show that improved fitting reliability and reproducibility can be achieved on subjects with higher total HFC. CONCLUSIONS: We have demonstrated feasibility of the proposed EPSI protocols on the quantification of HFC over a whole slice of liver with scan time in a single breath hold. Public Library of Science 2014-12-16 /pmc/articles/PMC4267781/ /pubmed/25514348 http://dx.doi.org/10.1371/journal.pone.0114436 Text en © 2014 Lin et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Lin, Yi-Ru Chiu, Jian-Jia Tsai, Shang-Yueh Feasibility and Reproducibility of Echo Planar Spectroscopic Imaging on the Quantification of Hepatic Fat |
title | Feasibility and Reproducibility of Echo Planar Spectroscopic Imaging on the Quantification of Hepatic Fat |
title_full | Feasibility and Reproducibility of Echo Planar Spectroscopic Imaging on the Quantification of Hepatic Fat |
title_fullStr | Feasibility and Reproducibility of Echo Planar Spectroscopic Imaging on the Quantification of Hepatic Fat |
title_full_unstemmed | Feasibility and Reproducibility of Echo Planar Spectroscopic Imaging on the Quantification of Hepatic Fat |
title_short | Feasibility and Reproducibility of Echo Planar Spectroscopic Imaging on the Quantification of Hepatic Fat |
title_sort | feasibility and reproducibility of echo planar spectroscopic imaging on the quantification of hepatic fat |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4267781/ https://www.ncbi.nlm.nih.gov/pubmed/25514348 http://dx.doi.org/10.1371/journal.pone.0114436 |
work_keys_str_mv | AT linyiru feasibilityandreproducibilityofechoplanarspectroscopicimagingonthequantificationofhepaticfat AT chiujianjia feasibilityandreproducibilityofechoplanarspectroscopicimagingonthequantificationofhepaticfat AT tsaishangyueh feasibilityandreproducibilityofechoplanarspectroscopicimagingonthequantificationofhepaticfat |