Cargando…

Fast and Efficient Drosophila melanogaster Gene Knock-Ins Using MiMIC Transposons

Modern molecular genetics studies necessitate the manipulation of genes in their endogenous locus, but most of the current methodologies require an inefficient donor-dependent homologous recombination step to locally modify the genome. Here we describe a methodology to efficiently generate Drosophil...

Descripción completa

Detalles Bibliográficos
Autores principales: Vilain, Sven, Vanhauwaert, Roeland, Maes, Ine, Schoovaerts, Nils, Zhou, Lujia, Soukup, Sandra, da Cunha, Raquel, Lauwers, Elsa, Fiers, Mark, Verstreken, Patrik
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Genetics Society of America 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4267933/
https://www.ncbi.nlm.nih.gov/pubmed/25298537
http://dx.doi.org/10.1534/g3.114.014803
_version_ 1782349214286610432
author Vilain, Sven
Vanhauwaert, Roeland
Maes, Ine
Schoovaerts, Nils
Zhou, Lujia
Soukup, Sandra
da Cunha, Raquel
Lauwers, Elsa
Fiers, Mark
Verstreken, Patrik
author_facet Vilain, Sven
Vanhauwaert, Roeland
Maes, Ine
Schoovaerts, Nils
Zhou, Lujia
Soukup, Sandra
da Cunha, Raquel
Lauwers, Elsa
Fiers, Mark
Verstreken, Patrik
author_sort Vilain, Sven
collection PubMed
description Modern molecular genetics studies necessitate the manipulation of genes in their endogenous locus, but most of the current methodologies require an inefficient donor-dependent homologous recombination step to locally modify the genome. Here we describe a methodology to efficiently generate Drosophila knock-in alleles by capitalizing on the availability of numerous genomic MiMIC transposon insertions carrying recombinogenic attP sites. Our methodology entails the efficient PhiC31-mediated integration of a recombination cassette flanked by unique I-SceI and/or I-CreI restriction enzyme sites into an attP-site. These restriction enzyme sites allow for double-strand break−mediated removal of unwanted flanking transposon sequences, while leaving the desired genomic modifications or recombination cassettes. As a proof-of-principle, we mutated LRRK, tau, and sky by using different MiMIC elements. We replaced 6 kb of genomic DNA encompassing the tau locus and 35 kb encompassing the sky locus with a recombination cassette that permits easy integration of DNA at these loci and we also generated a functional LRRK(HA) knock in allele. Given that ~92% of the Drosophila genes are located within the vicinity (<35 kb) of a MiMIC element, our methodology enables the efficient manipulation of nearly every locus in the fruit fly genome without the need for inefficient donor-dependent homologous recombination events.
format Online
Article
Text
id pubmed-4267933
institution National Center for Biotechnology Information
language English
publishDate 2014
publisher Genetics Society of America
record_format MEDLINE/PubMed
spelling pubmed-42679332014-12-23 Fast and Efficient Drosophila melanogaster Gene Knock-Ins Using MiMIC Transposons Vilain, Sven Vanhauwaert, Roeland Maes, Ine Schoovaerts, Nils Zhou, Lujia Soukup, Sandra da Cunha, Raquel Lauwers, Elsa Fiers, Mark Verstreken, Patrik G3 (Bethesda) Investigations Modern molecular genetics studies necessitate the manipulation of genes in their endogenous locus, but most of the current methodologies require an inefficient donor-dependent homologous recombination step to locally modify the genome. Here we describe a methodology to efficiently generate Drosophila knock-in alleles by capitalizing on the availability of numerous genomic MiMIC transposon insertions carrying recombinogenic attP sites. Our methodology entails the efficient PhiC31-mediated integration of a recombination cassette flanked by unique I-SceI and/or I-CreI restriction enzyme sites into an attP-site. These restriction enzyme sites allow for double-strand break−mediated removal of unwanted flanking transposon sequences, while leaving the desired genomic modifications or recombination cassettes. As a proof-of-principle, we mutated LRRK, tau, and sky by using different MiMIC elements. We replaced 6 kb of genomic DNA encompassing the tau locus and 35 kb encompassing the sky locus with a recombination cassette that permits easy integration of DNA at these loci and we also generated a functional LRRK(HA) knock in allele. Given that ~92% of the Drosophila genes are located within the vicinity (<35 kb) of a MiMIC element, our methodology enables the efficient manipulation of nearly every locus in the fruit fly genome without the need for inefficient donor-dependent homologous recombination events. Genetics Society of America 2014-10-08 /pmc/articles/PMC4267933/ /pubmed/25298537 http://dx.doi.org/10.1534/g3.114.014803 Text en Copyright © 2014 Vilain et al http://creativecommons.org/licenses/by/3.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution Unported License (http://creativecommons.org/licenses/by/3.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Investigations
Vilain, Sven
Vanhauwaert, Roeland
Maes, Ine
Schoovaerts, Nils
Zhou, Lujia
Soukup, Sandra
da Cunha, Raquel
Lauwers, Elsa
Fiers, Mark
Verstreken, Patrik
Fast and Efficient Drosophila melanogaster Gene Knock-Ins Using MiMIC Transposons
title Fast and Efficient Drosophila melanogaster Gene Knock-Ins Using MiMIC Transposons
title_full Fast and Efficient Drosophila melanogaster Gene Knock-Ins Using MiMIC Transposons
title_fullStr Fast and Efficient Drosophila melanogaster Gene Knock-Ins Using MiMIC Transposons
title_full_unstemmed Fast and Efficient Drosophila melanogaster Gene Knock-Ins Using MiMIC Transposons
title_short Fast and Efficient Drosophila melanogaster Gene Knock-Ins Using MiMIC Transposons
title_sort fast and efficient drosophila melanogaster gene knock-ins using mimic transposons
topic Investigations
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4267933/
https://www.ncbi.nlm.nih.gov/pubmed/25298537
http://dx.doi.org/10.1534/g3.114.014803
work_keys_str_mv AT vilainsven fastandefficientdrosophilamelanogastergeneknockinsusingmimictransposons
AT vanhauwaertroeland fastandefficientdrosophilamelanogastergeneknockinsusingmimictransposons
AT maesine fastandefficientdrosophilamelanogastergeneknockinsusingmimictransposons
AT schoovaertsnils fastandefficientdrosophilamelanogastergeneknockinsusingmimictransposons
AT zhoulujia fastandefficientdrosophilamelanogastergeneknockinsusingmimictransposons
AT soukupsandra fastandefficientdrosophilamelanogastergeneknockinsusingmimictransposons
AT dacunharaquel fastandefficientdrosophilamelanogastergeneknockinsusingmimictransposons
AT lauwerselsa fastandefficientdrosophilamelanogastergeneknockinsusingmimictransposons
AT fiersmark fastandefficientdrosophilamelanogastergeneknockinsusingmimictransposons
AT verstrekenpatrik fastandefficientdrosophilamelanogastergeneknockinsusingmimictransposons