Cargando…

Adipocyte-Specific IKKβ Signaling Suppresses Adipose Tissue Inflammation through an IL-13-Dependent Paracrine Feedback Pathway

Adipose tissue inflammation is one pathway shown to mediate insulin resistance in obese humans and rodents. Obesity induces dynamic cellular changes in adipose tissue to increase proinflammatory cytokines and diminish anti-inflammatory cytokines. However, we have found that anti-inflammatory interle...

Descripción completa

Detalles Bibliográficos
Autores principales: Kwon, Hyokjoon, Laurent, Sarnia, Tang, Yan, Zong, Haihong, Vemulapalli, Pratibha, Pessin, Jeffrey E.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4268106/
https://www.ncbi.nlm.nih.gov/pubmed/25466256
http://dx.doi.org/10.1016/j.celrep.2014.10.068
Descripción
Sumario:Adipose tissue inflammation is one pathway shown to mediate insulin resistance in obese humans and rodents. Obesity induces dynamic cellular changes in adipose tissue to increase proinflammatory cytokines and diminish anti-inflammatory cytokines. However, we have found that anti-inflammatory interleukin-13 (IL-13) is unexpectedly induced in adipose tissue of obese humans and high-fat diet (HFD)-fed mice, and the source of IL-13 is primarily the adipocyte. Moreover, HFD-induced proinflammatory cytokines such as tumor necrosis factor alpha (TNF-α) and IL-1β mediate IL-13 production in adipocytes in an IKKβ-dependent manner. In contrast, adipocyte-specific IKKβ-deficient mice show diminished IL-13 expression and enhanced inflammation after HFD feeding, resulting in a worsening of the insulin-resistant state. Together these data demonstrate that although IKKβ activates the expression of proinflammatory mediators, in adipocytes, IKKβ signaling also induces the expression of the anti-inflammatory cytokine IL-13, which plays a unique protective role by limiting adipose tissue inflammation and insulin resistance.