Cargando…

Expression of Clock genes in the pineal glands of newborn rats with hypoxic-ischemic encephalopathy☆

Clock genes are involved in circadian rhythm regulation, and surviving newborns with hypoxic-ischemic encephalopathy may present with sleep-wake cycle reversal. This study aimed to determine the expression of the clock genes Clock and Bmal1, in the pineal gland of rats with hypoxic-ischemic brain da...

Descripción completa

Detalles Bibliográficos
Autores principales: Sun, Bin, Feng, Xing, Ding, Xin, Bao, Li, Li, Yongfu, He, Jun, Jin, Meifang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Medknow Publications & Media Pvt Ltd 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4268722/
https://www.ncbi.nlm.nih.gov/pubmed/25538743
http://dx.doi.org/10.3969/j.issn.1673-5374.2012.028.008
Descripción
Sumario:Clock genes are involved in circadian rhythm regulation, and surviving newborns with hypoxic-ischemic encephalopathy may present with sleep-wake cycle reversal. This study aimed to determine the expression of the clock genes Clock and Bmal1, in the pineal gland of rats with hypoxic-ischemic brain damage. Results showed that levels of Clock mRNA were not significantly changed within 48 hours after cerebral hypoxia and ischemia. Expression levels of CLOCK and BMAL1 protein were significantly higher after 48 hours. The levels of Bmal1 mRNA reached a peak at 36 hours, but were significantly reduced at 48 hours. Experimental findings indicate that Clock and Bmal1 genes were indeed expressed in the pineal glands of neonatal rats. At the initial stage (within 36 hours) of hypoxic-ischemic brain damage, only slight changes in the expression levels of these two genes were detected, followed by significant changes at 36–48 hours. These changes may be associated with circadian rhythm disorder induced by hypoxic-ischemic brain damage.