Cargando…
Astroglial PGC-1alpha increases mitochondrial antioxidant capacity and suppresses inflammation: implications for multiple sclerosis
Recent evidence suggests that reactive oxygen species (ROS) produced by inflammatory cells drive axonal degeneration in active multiple sclerosis (MS) lesions by inducing mitochondrial dysfunction. Mitochondria are endowed with a variety of antioxidant enzymes, including peroxiredoxin-3 and thioredo...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4268800/ https://www.ncbi.nlm.nih.gov/pubmed/25492529 http://dx.doi.org/10.1186/s40478-014-0170-2 |
Sumario: | Recent evidence suggests that reactive oxygen species (ROS) produced by inflammatory cells drive axonal degeneration in active multiple sclerosis (MS) lesions by inducing mitochondrial dysfunction. Mitochondria are endowed with a variety of antioxidant enzymes, including peroxiredoxin-3 and thioredoxin-2, which are involved in limiting ROS-induced damage. In this study, we explored the distribution and role of the mitochondrial antioxidants peroxiredoxin-3 and thioredoxin-2 as well as their regulator peroxisome proliferator-activated receptor gamma coactivator1-alpha (PGC-1α) in MS pathogenesis. Immunohistochemical analysis of a large cohort of MS patients revealed a striking upregulation of PGC-1α and downstream mitochondrial antioxidants in active demyelinating MS lesions. Enhanced expression was predominantly observed in reactive astrocytes. To elucidate the functional role of astrocytic PGC-1α in MS pathology, we generated human primary astrocytes that genetically overexpressed PGC-1α. Upon an oxidative insult, these cells were shown to produce less ROS and were found to be more resistant to ROS-induced cell death compared to control cells. Intriguingly, also neuronal cells co-cultured with PGC-1α-overexpressing astrocytes were protected against an exogenous oxidative attack compared to neuronal cells co-cultured with control astrocytes. Finally, enhanced astrocytic PGC-1α levels markedly reduced the production and secretion of the pro-inflammatory mediators interleukin-6 and chemokine (C-C motif) ligand 2. Our findings suggest that increased astrocytic PGC-1α in active MS lesions might initially function as an endogenous protective mechanism to dampen oxidative damage and inflammation thereby reducing neurodegeneration. Activation of PGC-1α therefore represents a promising therapeutic strategy to improve mitochondrial function and repress inflammation. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s40478-014-0170-2) contains supplementary material, which is available to authorized users. |
---|