Cargando…

An introduction to the mathematical structure of the Wright–Fisher model of population genetics

In this paper, we develop the mathematical structure of the Wright–Fisher model for evolution of the relative frequencies of two alleles at a diploid locus under random genetic drift in a population of fixed size in its simplest form, that is, without mutation or selection. We establish a new concep...

Descripción completa

Detalles Bibliográficos
Autores principales: Tran, Tat Dat, Hofrichter, Julian, Jost, Jürgen
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer-Verlag 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4269093/
https://www.ncbi.nlm.nih.gov/pubmed/23239077
http://dx.doi.org/10.1007/s12064-012-0170-3
_version_ 1782349320454930432
author Tran, Tat Dat
Hofrichter, Julian
Jost, Jürgen
author_facet Tran, Tat Dat
Hofrichter, Julian
Jost, Jürgen
author_sort Tran, Tat Dat
collection PubMed
description In this paper, we develop the mathematical structure of the Wright–Fisher model for evolution of the relative frequencies of two alleles at a diploid locus under random genetic drift in a population of fixed size in its simplest form, that is, without mutation or selection. We establish a new concept of a global solution for the diffusion approximation (Fokker–Planck equation), prove its existence and uniqueness and then show how one can easily derive all the essential properties of this random genetic drift process from our solution. Thus, our solution turns out to be superior to the local solution constructed by Kimura.
format Online
Article
Text
id pubmed-4269093
institution National Center for Biotechnology Information
language English
publishDate 2012
publisher Springer-Verlag
record_format MEDLINE/PubMed
spelling pubmed-42690932014-12-19 An introduction to the mathematical structure of the Wright–Fisher model of population genetics Tran, Tat Dat Hofrichter, Julian Jost, Jürgen Theory Biosci Original Paper In this paper, we develop the mathematical structure of the Wright–Fisher model for evolution of the relative frequencies of two alleles at a diploid locus under random genetic drift in a population of fixed size in its simplest form, that is, without mutation or selection. We establish a new concept of a global solution for the diffusion approximation (Fokker–Planck equation), prove its existence and uniqueness and then show how one can easily derive all the essential properties of this random genetic drift process from our solution. Thus, our solution turns out to be superior to the local solution constructed by Kimura. Springer-Verlag 2012-12-14 2013 /pmc/articles/PMC4269093/ /pubmed/23239077 http://dx.doi.org/10.1007/s12064-012-0170-3 Text en © The Author(s) 2012 https://creativecommons.org/licenses/by/2.0/ Open AccessThis article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.
spellingShingle Original Paper
Tran, Tat Dat
Hofrichter, Julian
Jost, Jürgen
An introduction to the mathematical structure of the Wright–Fisher model of population genetics
title An introduction to the mathematical structure of the Wright–Fisher model of population genetics
title_full An introduction to the mathematical structure of the Wright–Fisher model of population genetics
title_fullStr An introduction to the mathematical structure of the Wright–Fisher model of population genetics
title_full_unstemmed An introduction to the mathematical structure of the Wright–Fisher model of population genetics
title_short An introduction to the mathematical structure of the Wright–Fisher model of population genetics
title_sort introduction to the mathematical structure of the wright–fisher model of population genetics
topic Original Paper
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4269093/
https://www.ncbi.nlm.nih.gov/pubmed/23239077
http://dx.doi.org/10.1007/s12064-012-0170-3
work_keys_str_mv AT trantatdat anintroductiontothemathematicalstructureofthewrightfishermodelofpopulationgenetics
AT hofrichterjulian anintroductiontothemathematicalstructureofthewrightfishermodelofpopulationgenetics
AT jostjurgen anintroductiontothemathematicalstructureofthewrightfishermodelofpopulationgenetics
AT trantatdat introductiontothemathematicalstructureofthewrightfishermodelofpopulationgenetics
AT hofrichterjulian introductiontothemathematicalstructureofthewrightfishermodelofpopulationgenetics
AT jostjurgen introductiontothemathematicalstructureofthewrightfishermodelofpopulationgenetics