Cargando…
An introduction to the mathematical structure of the Wright–Fisher model of population genetics
In this paper, we develop the mathematical structure of the Wright–Fisher model for evolution of the relative frequencies of two alleles at a diploid locus under random genetic drift in a population of fixed size in its simplest form, that is, without mutation or selection. We establish a new concep...
Autores principales: | Tran, Tat Dat, Hofrichter, Julian, Jost, Jürgen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer-Verlag
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4269093/ https://www.ncbi.nlm.nih.gov/pubmed/23239077 http://dx.doi.org/10.1007/s12064-012-0170-3 |
Ejemplares similares
-
Information geometry and population genetics: the mathematical structure of the Wright-Fisher model
por: Hofrichter, Julian, et al.
Publicado: (2017) -
SLiM 3: Forward Genetic Simulations Beyond the Wright–Fisher Model
por: Haller, Benjamin C, et al.
Publicado: (2019) -
Effects of the Ordering of Natural Selection and Population Regulation Mechanisms on Wright-Fisher Models
por: He, Zhangyi, et al.
Publicado: (2017) -
Statistical Inference in the Wright–Fisher Model Using Allele Frequency Data
por: Tataru, Paula, et al.
Publicado: (2017) -
A dual process for the coupled Wright–Fisher diffusion
por: Favero, Martina, et al.
Publicado: (2021)