Cargando…
Predicting the Time Course of Individual Objects with MEG
To respond appropriately to objects, we must process visual inputs rapidly and assign them meaning. This involves highly dynamic, interactive neural processes through which information accumulates and cognitive operations are resolved across multiple time scales. However, there is currently no model...
Autores principales: | Clarke, Alex, Devereux, Barry J., Randall, Billi, Tyler, Lorraine K. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4269546/ https://www.ncbi.nlm.nih.gov/pubmed/25209607 http://dx.doi.org/10.1093/cercor/bhu203 |
Ejemplares similares
-
Integrated deep visual and semantic attractor neural networks predict fMRI pattern-information along the ventral object processing pathway
por: Devereux, Barry J., et al.
Publicado: (2018) -
The Centre for Speech, Language and the Brain (CSLB) concept property norms
por: Devereux, Barry J., et al.
Publicado: (2013) -
Feature Statistics Modulate the Activation of Meaning During Spoken Word Processing
por: Devereux, Barry J., et al.
Publicado: (2015) -
The perirhinal cortex and conceptual processing: Effects of feature-based statistics following damage to the anterior temporal lobes
por: Wright, Paul, et al.
Publicado: (2015) -
Bayesian MEG time courses with fMRI priors
por: Wang, Yingying, et al.
Publicado: (2021)