Cargando…

NMDA-receptor antagonists block B-cell function but foster IL-10 production in BCR/CD40-activated B cells

BACKGROUND: B cells are important effectors and regulators of adaptive and innate immune responses, inflammation and autoimmunity, for instance in anti-NMDA-receptor (NMDAR) encephalitis. Thus, pharmacological modulation of B-cell function could be an effective regimen in therapeutic strategies. Sin...

Descripción completa

Detalles Bibliográficos
Autores principales: Simma, Narasimhulu, Bose, Tanima, Kahlfuß, Sascha, Mankiewicz, Judith, Lowinus, Theresa, Lühder, Fred, Schüler, Thomas, Schraven, Burkhart, Heine, Martin, Bommhardt, Ursula
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4269920/
https://www.ncbi.nlm.nih.gov/pubmed/25477292
http://dx.doi.org/10.1186/s12964-014-0075-5
Descripción
Sumario:BACKGROUND: B cells are important effectors and regulators of adaptive and innate immune responses, inflammation and autoimmunity, for instance in anti-NMDA-receptor (NMDAR) encephalitis. Thus, pharmacological modulation of B-cell function could be an effective regimen in therapeutic strategies. Since the non-competitive NMDAR antagonist memantine is clinically applied to treat advanced Alzheimer`s disease and ketamine is supposed to improve the course of resistant depression, it is important to know how these drugs affect B-cell function. RESULTS: Non-competitive NMDAR antagonists impaired B-cell receptor (BCR)- and lipopolysaccharide (LPS)-induced B-cell proliferation, reduced B-cell migration towards the chemokines SDF-1α and CCL21 and downregulated IgM and IgG secretion. Mechanistically, these effects were mediated through a blockade of K(v)1.3 and K(Ca)3.1 potassium channels and resulted in an attenuated Ca(2+)-flux and activation of Erk1/2, Akt and NFATc1. Interestingly, NMDAR antagonist treatment increased the frequency of IL-10 producing B cells after BCR/CD40 stimulation. CONCLUSIONS: Non-competitive NMDAR antagonists attenuate BCR and Toll-like receptor 4 (TLR4) B-cell signaling and effector function and can foster IL-10 production. Consequently, NMDAR antagonists may be useful to target B cells in autoimmune diseases or pathological systemic inflammation. The drugs’ additional side effects on B cells should be considered in treatments of neuronal disorders with NMDAR antagonists.