Cargando…

Classical swine fever virus induces oxidative stress in swine umbilical vein endothelial cells

BACKGROUND: Classical swine fever virus (CSFV) infection causes significant losses of pigs, which is characterized by hemorrhage, disseminated intravascular coagulation and leucopenia. The swine vascular endothelial cell is a primary target cell for CSFV. The aim of this study was to determine the r...

Descripción completa

Detalles Bibliográficos
Autores principales: He, Lei, Zhang, Yanming, Fang, Yanqin, Liang, Wulong, Lin, Jihui, Cheng, Min
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4270048/
https://www.ncbi.nlm.nih.gov/pubmed/25439655
http://dx.doi.org/10.1186/s12917-014-0279-3
Descripción
Sumario:BACKGROUND: Classical swine fever virus (CSFV) infection causes significant losses of pigs, which is characterized by hemorrhage, disseminated intravascular coagulation and leucopenia. The swine vascular endothelial cell is a primary target cell for CSFV. The aim of this study was to determine the role of CSFV infection in inducing oxidative stress (OS) in vascular endothelial cells. RESULTS: We demonstrated that CSFV infection induced oxidative stress in swine umbilical vein endothelial cells (SUVECs), characterized by the induction of reactive oxygen species (ROS) production and the elevations of porcine antioxidant proteins thioredoxin (Trx), peroxiredoxin-6 (PRDX-6) and heme oxygenase-1 (HO-1) expression. Furthermore, cyclooxygenase-2 (COX-2), a pro-inflammatory protein related to oxidative stress, was up-regulated while anti-inflammatory protein peroxisome proliferator-activated receptor-γ (PPAR-γ), an important mediator in vascular functional regulation, was down-regulated in the CSFV infected cells. In addition, antioxidants showed significant inhibitory effects on the CSFV replication, indicating a close relationship between CSFV replication and OS induced in the host cells. CONCLUSIONS: Our results indicated that CSFV infection induced oxidative stress in SUVECs. These findings provide novel information on the mechanism by which CSFV can alter intracellular events associated with the viral infection.