Cargando…
Analysis of Multivariate Disease Classification Data in the Presence of Partially Missing Disease Traits
In modern cancer epidemiology, diseases are classified based on pathologic and molecular traits, and different combinations of these traits give rise to many disease subtypes. The effect of predictor variables can be measured by fitting a polytomous logistic model to such data. The differences (hete...
Autores principales: | Miao, Jingang, Sinha, Samiran, Wang, Suojin, Diver, W Ryan, Gapstur, Susan M |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4270282/ https://www.ncbi.nlm.nih.gov/pubmed/25530913 http://dx.doi.org/10.4172/2155-6180.1000197 |
Ejemplares similares
-
Mood Disorder Detection in Adolescents by Classification Trees, Random Forests and XGBoost in Presence of Missing Data
por: Turska, Elzbieta, et al.
Publicado: (2021) -
On multivariate imputation and forecasting of decadal wind speed missing data
por: Wesonga, Ronald
Publicado: (2015) -
Influence of Missing Values Substitutes on Multivariate Analysis of Metabolomics Data
por: Gromski, Piotr S., et al.
Publicado: (2014) -
Classification and Multivariate Analysis for Complex Data Structures
por: Fichet, Bernard, et al.
Publicado: (2011) -
Estimating correlation between multivariate longitudinal data in the presence of heterogeneity
por: Gao, Feng, et al.
Publicado: (2017)