Cargando…

Predictive distributions were developed for the extent of heterogeneity in meta-analyses of continuous outcome data

OBJECTIVES: Estimation of between-study heterogeneity is problematic in small meta-analyses. Bayesian meta-analysis is beneficial because it allows incorporation of external evidence on heterogeneity. To facilitate this, we provide empirical evidence on the likely heterogeneity between studies in me...

Descripción completa

Detalles Bibliográficos
Autores principales: Rhodes, Kirsty M., Turner, Rebecca M., Higgins, Julian P.T.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4270451/
https://www.ncbi.nlm.nih.gov/pubmed/25304503
http://dx.doi.org/10.1016/j.jclinepi.2014.08.012
_version_ 1782349500196585472
author Rhodes, Kirsty M.
Turner, Rebecca M.
Higgins, Julian P.T.
author_facet Rhodes, Kirsty M.
Turner, Rebecca M.
Higgins, Julian P.T.
author_sort Rhodes, Kirsty M.
collection PubMed
description OBJECTIVES: Estimation of between-study heterogeneity is problematic in small meta-analyses. Bayesian meta-analysis is beneficial because it allows incorporation of external evidence on heterogeneity. To facilitate this, we provide empirical evidence on the likely heterogeneity between studies in meta-analyses relating to specific research settings. STUDY DESIGN AND SETTING: Our analyses included 6,492 continuous-outcome meta-analyses within the Cochrane Database of Systematic Reviews. We investigated the influence of meta-analysis settings on heterogeneity by modeling study data from all meta-analyses on the standardized mean difference scale. Meta-analysis setting was described according to outcome type, intervention comparison type, and medical area. Predictive distributions for between-study variance expected in future meta-analyses were obtained, which can be used directly as informative priors. RESULTS: Among outcome types, heterogeneity was found to be lowest in meta-analyses of obstetric outcomes. Among intervention comparison types, heterogeneity was lowest in meta-analyses comparing two pharmacologic interventions. Predictive distributions are reported for different settings. In two example meta-analyses, incorporating external evidence led to a more precise heterogeneity estimate. CONCLUSION: Heterogeneity was influenced by meta-analysis characteristics. Informative priors for between-study variance were derived for each specific setting. Our analyses thus assist the incorporation of realistic prior information into meta-analyses including few studies.
format Online
Article
Text
id pubmed-4270451
institution National Center for Biotechnology Information
language English
publishDate 2015
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-42704512015-01-01 Predictive distributions were developed for the extent of heterogeneity in meta-analyses of continuous outcome data Rhodes, Kirsty M. Turner, Rebecca M. Higgins, Julian P.T. J Clin Epidemiol Original Article OBJECTIVES: Estimation of between-study heterogeneity is problematic in small meta-analyses. Bayesian meta-analysis is beneficial because it allows incorporation of external evidence on heterogeneity. To facilitate this, we provide empirical evidence on the likely heterogeneity between studies in meta-analyses relating to specific research settings. STUDY DESIGN AND SETTING: Our analyses included 6,492 continuous-outcome meta-analyses within the Cochrane Database of Systematic Reviews. We investigated the influence of meta-analysis settings on heterogeneity by modeling study data from all meta-analyses on the standardized mean difference scale. Meta-analysis setting was described according to outcome type, intervention comparison type, and medical area. Predictive distributions for between-study variance expected in future meta-analyses were obtained, which can be used directly as informative priors. RESULTS: Among outcome types, heterogeneity was found to be lowest in meta-analyses of obstetric outcomes. Among intervention comparison types, heterogeneity was lowest in meta-analyses comparing two pharmacologic interventions. Predictive distributions are reported for different settings. In two example meta-analyses, incorporating external evidence led to a more precise heterogeneity estimate. CONCLUSION: Heterogeneity was influenced by meta-analysis characteristics. Informative priors for between-study variance were derived for each specific setting. Our analyses thus assist the incorporation of realistic prior information into meta-analyses including few studies. Elsevier 2015-01 /pmc/articles/PMC4270451/ /pubmed/25304503 http://dx.doi.org/10.1016/j.jclinepi.2014.08.012 Text en © 2015 The Authors https://creativecommons.org/licenses/by/3.0/This work is licensed under a Creative Commons Attribution 3.0 Unported License (https://creativecommons.org/licenses/by/3.0/) .
spellingShingle Original Article
Rhodes, Kirsty M.
Turner, Rebecca M.
Higgins, Julian P.T.
Predictive distributions were developed for the extent of heterogeneity in meta-analyses of continuous outcome data
title Predictive distributions were developed for the extent of heterogeneity in meta-analyses of continuous outcome data
title_full Predictive distributions were developed for the extent of heterogeneity in meta-analyses of continuous outcome data
title_fullStr Predictive distributions were developed for the extent of heterogeneity in meta-analyses of continuous outcome data
title_full_unstemmed Predictive distributions were developed for the extent of heterogeneity in meta-analyses of continuous outcome data
title_short Predictive distributions were developed for the extent of heterogeneity in meta-analyses of continuous outcome data
title_sort predictive distributions were developed for the extent of heterogeneity in meta-analyses of continuous outcome data
topic Original Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4270451/
https://www.ncbi.nlm.nih.gov/pubmed/25304503
http://dx.doi.org/10.1016/j.jclinepi.2014.08.012
work_keys_str_mv AT rhodeskirstym predictivedistributionsweredevelopedfortheextentofheterogeneityinmetaanalysesofcontinuousoutcomedata
AT turnerrebeccam predictivedistributionsweredevelopedfortheextentofheterogeneityinmetaanalysesofcontinuousoutcomedata
AT higginsjulianpt predictivedistributionsweredevelopedfortheextentofheterogeneityinmetaanalysesofcontinuousoutcomedata