Cargando…

Assessing the Consistency and Microbiological Effectiveness of Household Water Treatment Practices by Urban and Rural Populations Claiming to Treat Their Water at Home: A Case Study in Peru

BACKGROUND: Household water treatment (HWT) can improve drinking water quality and prevent disease if used correctly and consistently by vulnerable populations. Over 1.1 billion people report treating their water prior to drinking it. These estimates, however, are based on responses to household sur...

Descripción completa

Detalles Bibliográficos
Autores principales: Rosa, Ghislaine, Huaylinos, Maria L., Gil, Ana, Lanata, Claudio, Clasen, Thomas
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4270781/
https://www.ncbi.nlm.nih.gov/pubmed/25522371
http://dx.doi.org/10.1371/journal.pone.0114997
Descripción
Sumario:BACKGROUND: Household water treatment (HWT) can improve drinking water quality and prevent disease if used correctly and consistently by vulnerable populations. Over 1.1 billion people report treating their water prior to drinking it. These estimates, however, are based on responses to household surveys that may exaggerate the consistency and microbiological performance of the practice—key factors for reducing pathogen exposure and achieving health benefits. The objective of this study was to examine how HWT practices are actually performed by households identified as HWT users, according to international monitoring standards. METHODS AND FINDINGS: We conducted a 6-month case study in urban (n = 117 households) and rural (n = 115 households) Peru, a country in which 82.8% of households report treating their water at home. We used direct observation, in-depth interviews, surveys, spot-checks, and water sampling to assess water treatment practices among households that claimed to treat their drinking water at home. While consistency of reported practices was high in both urban (94.8%) and rural (85.3%) settings, availability of treated water (based on self-report) at time of collection was low, with 67.1% and 23.0% of urban and rural households having treated water at all three sampling visits. Self-reported consumption of untreated water in the home among adults and children <5 was common and this was corroborated during home observations. Drinking water of self-reported users was significantly better than source water in the urban setting and negligible but significantly better in the rural setting. However, only 46.3% and 31.6% of households had drinking water <1 CFU/100 mL at all follow-up visits. CONCLUSIONS: Our results raise questions about the usefulness of current international monitoring of HWT practices and their usefulness as a proxy indicator for drinking water quality. The lack of consistency and sub-optimal microbiological effectiveness also raises questions about the potential of HWT to prevent waterborne diseases.