Cargando…
Molecular cancer classification using a meta-sample-based regularized robust coding method
MOTIVATION: Previous studies have demonstrated that machine learning based molecular cancer classification using gene expression profiling (GEP) data is promising for the clinic diagnosis and treatment of cancer. Novel classification methods with high efficiency and prediction accuracy are still nee...
Autores principales: | Wang, Shu-Lin, Sun, Liuchao, Fang, Jianwen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4271561/ https://www.ncbi.nlm.nih.gov/pubmed/25473795 http://dx.doi.org/10.1186/1471-2105-15-S15-S2 |
Ejemplares similares
-
Diagnostic prediction of complex diseases using phase-only correlation based on virtual sample template
por: Wang, Shu-Lin, et al.
Publicado: (2013) -
Using multitask classification methods to investigate the kinase-specific phosphorylation sites
por: Gao, Shan, et al.
Publicado: (2012) -
Regularized regression method for genome-wide association studies
por: Liu, Jin, et al.
Publicado: (2011) -
Gene network modular-based classification of microarray samples
por: Hu, Pingzhao, et al.
Publicado: (2012) -
Systematic classification of non-coding RNAs by epigenomic similarity
por: Dozmorov, Mikhail G, et al.
Publicado: (2013)