Cargando…

Comparing Sound Localization Deficits in Bilateral Cochlear-Implant Users and Vocoder Simulations With Normal-Hearing Listeners

Bilateral cochlear-implant (BiCI) users are less accurate at localizing free-field (FF) sound sources than normal-hearing (NH) listeners. This performance gap is not well understood but is likely due to a combination of compromises in acoustic signal representation by the two independent speech proc...

Descripción completa

Detalles Bibliográficos
Autores principales: Jones, Heath, Kan, Alan, Litovsky, Ruth Y.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: SAGE Publications 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4271768/
https://www.ncbi.nlm.nih.gov/pubmed/25385244
http://dx.doi.org/10.1177/2331216514554574
_version_ 1782349667846062080
author Jones, Heath
Kan, Alan
Litovsky, Ruth Y.
author_facet Jones, Heath
Kan, Alan
Litovsky, Ruth Y.
author_sort Jones, Heath
collection PubMed
description Bilateral cochlear-implant (BiCI) users are less accurate at localizing free-field (FF) sound sources than normal-hearing (NH) listeners. This performance gap is not well understood but is likely due to a combination of compromises in acoustic signal representation by the two independent speech processors and neural degradation of auditory pathways associated with a patient’s hearing loss. To exclusively investigate the effect of CI speech encoding on horizontal-plane sound localization, the present study measured sound localization performance in NH subjects listening to vocoder processed and nonvocoded virtual acoustic space (VAS) stimuli. Various aspects of BiCI stimulation such as independently functioning devices, variable across-ear channel selection, and pulsatile stimulation were simulated using uncorrelated noise (N(u)), correlated noise (N(0)), or Gaussian-enveloped tone (GET) carriers during vocoder processing. Additionally, FF sound localization in BiCI users was measured in the same testing environment for comparison. Distinct response patterns across azimuthal locations were evident for both listener groups and were analyzed using a multilevel regression analysis. Simulated implant speech encoding, regardless of carrier, was detrimental to NH localization and the GET vocoder best simulated BiCI FF performance in NH listeners. Overall, the detrimental effect of vocoder processing on NH performance suggests that sound localization deficits may persist even for BiCI patients who have minimal neural degradation associated with their hearing loss and indicates that CI speech encoding plays a significant role in the sound localization deficits experienced by BiCI users.
format Online
Article
Text
id pubmed-4271768
institution National Center for Biotechnology Information
language English
publishDate 2014
publisher SAGE Publications
record_format MEDLINE/PubMed
spelling pubmed-42717682014-12-22 Comparing Sound Localization Deficits in Bilateral Cochlear-Implant Users and Vocoder Simulations With Normal-Hearing Listeners Jones, Heath Kan, Alan Litovsky, Ruth Y. Trends Hear Original Articles Bilateral cochlear-implant (BiCI) users are less accurate at localizing free-field (FF) sound sources than normal-hearing (NH) listeners. This performance gap is not well understood but is likely due to a combination of compromises in acoustic signal representation by the two independent speech processors and neural degradation of auditory pathways associated with a patient’s hearing loss. To exclusively investigate the effect of CI speech encoding on horizontal-plane sound localization, the present study measured sound localization performance in NH subjects listening to vocoder processed and nonvocoded virtual acoustic space (VAS) stimuli. Various aspects of BiCI stimulation such as independently functioning devices, variable across-ear channel selection, and pulsatile stimulation were simulated using uncorrelated noise (N(u)), correlated noise (N(0)), or Gaussian-enveloped tone (GET) carriers during vocoder processing. Additionally, FF sound localization in BiCI users was measured in the same testing environment for comparison. Distinct response patterns across azimuthal locations were evident for both listener groups and were analyzed using a multilevel regression analysis. Simulated implant speech encoding, regardless of carrier, was detrimental to NH localization and the GET vocoder best simulated BiCI FF performance in NH listeners. Overall, the detrimental effect of vocoder processing on NH performance suggests that sound localization deficits may persist even for BiCI patients who have minimal neural degradation associated with their hearing loss and indicates that CI speech encoding plays a significant role in the sound localization deficits experienced by BiCI users. SAGE Publications 2014-11-05 /pmc/articles/PMC4271768/ /pubmed/25385244 http://dx.doi.org/10.1177/2331216514554574 Text en © The Author(s) 2014 http://creativecommons.org/licenses/by-nc/3.0/ This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 3.0 License (http://www.creativecommons.org/licenses/by-nc/3.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access page(http://www.uk.sagepub.com/aboutus/openaccess.htm).
spellingShingle Original Articles
Jones, Heath
Kan, Alan
Litovsky, Ruth Y.
Comparing Sound Localization Deficits in Bilateral Cochlear-Implant Users and Vocoder Simulations With Normal-Hearing Listeners
title Comparing Sound Localization Deficits in Bilateral Cochlear-Implant Users and Vocoder Simulations With Normal-Hearing Listeners
title_full Comparing Sound Localization Deficits in Bilateral Cochlear-Implant Users and Vocoder Simulations With Normal-Hearing Listeners
title_fullStr Comparing Sound Localization Deficits in Bilateral Cochlear-Implant Users and Vocoder Simulations With Normal-Hearing Listeners
title_full_unstemmed Comparing Sound Localization Deficits in Bilateral Cochlear-Implant Users and Vocoder Simulations With Normal-Hearing Listeners
title_short Comparing Sound Localization Deficits in Bilateral Cochlear-Implant Users and Vocoder Simulations With Normal-Hearing Listeners
title_sort comparing sound localization deficits in bilateral cochlear-implant users and vocoder simulations with normal-hearing listeners
topic Original Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4271768/
https://www.ncbi.nlm.nih.gov/pubmed/25385244
http://dx.doi.org/10.1177/2331216514554574
work_keys_str_mv AT jonesheath comparingsoundlocalizationdeficitsinbilateralcochlearimplantusersandvocodersimulationswithnormalhearinglisteners
AT kanalan comparingsoundlocalizationdeficitsinbilateralcochlearimplantusersandvocodersimulationswithnormalhearinglisteners
AT litovskyruthy comparingsoundlocalizationdeficitsinbilateralcochlearimplantusersandvocodersimulationswithnormalhearinglisteners