Cargando…
Self-Recognition of One's Own Fall Recruits the Genuine Bodily Crisis-Related Brain Activity
While bipedalism is a fundamental evolutionary adaptation thought to be essential for the development of the human brain, the erect body is always an inch or two away from falling. Although the neural mechanism for automatically detecting one's own body instability is an important consideration...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4272298/ https://www.ncbi.nlm.nih.gov/pubmed/25525808 http://dx.doi.org/10.1371/journal.pone.0115303 |
_version_ | 1782349700636082176 |
---|---|
author | Atomi, Tomoaki Noriuchi, Madoka Oba, Kentaro Atomi, Yoriko Kikuchi, Yoshiaki |
author_facet | Atomi, Tomoaki Noriuchi, Madoka Oba, Kentaro Atomi, Yoriko Kikuchi, Yoshiaki |
author_sort | Atomi, Tomoaki |
collection | PubMed |
description | While bipedalism is a fundamental evolutionary adaptation thought to be essential for the development of the human brain, the erect body is always an inch or two away from falling. Although the neural mechanism for automatically detecting one's own body instability is an important consideration, there have thus far been few functional neuroimaging studies because of the restrictions placed on participants' movements. Here, we used functional magnetic resonance imaging to investigate the neural substrate underlying whole body instability, based on the self-recognition paradigm that uses video stimuli consisting of one's own and others' whole bodies depicted in stable and unstable states. Analyses revealed significant activity in the regions which would be activated during genuine unstable bodily states: The right parieto-insular vestibular cortex, inferior frontal junction, posterior insula and parabrachial nucleus. We argue that these right-lateralized cortical and brainstem regions mediate vestibular information processing for detection of vestibular anomalies, defensive motor responding in which the necessary motor responses are automatically prepared/simulated to protect one's own body, and sympathetic activity as a form of alarm response during whole body instability. |
format | Online Article Text |
id | pubmed-4272298 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-42722982014-12-26 Self-Recognition of One's Own Fall Recruits the Genuine Bodily Crisis-Related Brain Activity Atomi, Tomoaki Noriuchi, Madoka Oba, Kentaro Atomi, Yoriko Kikuchi, Yoshiaki PLoS One Research Article While bipedalism is a fundamental evolutionary adaptation thought to be essential for the development of the human brain, the erect body is always an inch or two away from falling. Although the neural mechanism for automatically detecting one's own body instability is an important consideration, there have thus far been few functional neuroimaging studies because of the restrictions placed on participants' movements. Here, we used functional magnetic resonance imaging to investigate the neural substrate underlying whole body instability, based on the self-recognition paradigm that uses video stimuli consisting of one's own and others' whole bodies depicted in stable and unstable states. Analyses revealed significant activity in the regions which would be activated during genuine unstable bodily states: The right parieto-insular vestibular cortex, inferior frontal junction, posterior insula and parabrachial nucleus. We argue that these right-lateralized cortical and brainstem regions mediate vestibular information processing for detection of vestibular anomalies, defensive motor responding in which the necessary motor responses are automatically prepared/simulated to protect one's own body, and sympathetic activity as a form of alarm response during whole body instability. Public Library of Science 2014-12-19 /pmc/articles/PMC4272298/ /pubmed/25525808 http://dx.doi.org/10.1371/journal.pone.0115303 Text en © 2014 Atomi et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Atomi, Tomoaki Noriuchi, Madoka Oba, Kentaro Atomi, Yoriko Kikuchi, Yoshiaki Self-Recognition of One's Own Fall Recruits the Genuine Bodily Crisis-Related Brain Activity |
title | Self-Recognition of One's Own Fall Recruits the Genuine Bodily Crisis-Related Brain Activity |
title_full | Self-Recognition of One's Own Fall Recruits the Genuine Bodily Crisis-Related Brain Activity |
title_fullStr | Self-Recognition of One's Own Fall Recruits the Genuine Bodily Crisis-Related Brain Activity |
title_full_unstemmed | Self-Recognition of One's Own Fall Recruits the Genuine Bodily Crisis-Related Brain Activity |
title_short | Self-Recognition of One's Own Fall Recruits the Genuine Bodily Crisis-Related Brain Activity |
title_sort | self-recognition of one's own fall recruits the genuine bodily crisis-related brain activity |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4272298/ https://www.ncbi.nlm.nih.gov/pubmed/25525808 http://dx.doi.org/10.1371/journal.pone.0115303 |
work_keys_str_mv | AT atomitomoaki selfrecognitionofonesownfallrecruitsthegenuinebodilycrisisrelatedbrainactivity AT noriuchimadoka selfrecognitionofonesownfallrecruitsthegenuinebodilycrisisrelatedbrainactivity AT obakentaro selfrecognitionofonesownfallrecruitsthegenuinebodilycrisisrelatedbrainactivity AT atomiyoriko selfrecognitionofonesownfallrecruitsthegenuinebodilycrisisrelatedbrainactivity AT kikuchiyoshiaki selfrecognitionofonesownfallrecruitsthegenuinebodilycrisisrelatedbrainactivity |