Cargando…
Microtubule-Dependent Modulation of Adhesion Complex Composition
The microtubule network regulates the turnover of integrin-containing adhesion complexes to stimulate cell migration. Disruption of the microtubule network results in an enlargement of adhesion complex size due to increased RhoA-stimulated actomyosin contractility, and inhibition of adhesion complex...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4272306/ https://www.ncbi.nlm.nih.gov/pubmed/25526367 http://dx.doi.org/10.1371/journal.pone.0115213 |
Sumario: | The microtubule network regulates the turnover of integrin-containing adhesion complexes to stimulate cell migration. Disruption of the microtubule network results in an enlargement of adhesion complex size due to increased RhoA-stimulated actomyosin contractility, and inhibition of adhesion complex turnover; however, the microtubule-dependent changes in adhesion complex composition have not been studied in a global, unbiased manner. Here we used label-free quantitative mass spectrometry-based proteomics to determine adhesion complex changes that occur upon microtubule disruption with nocodazole. Nocodazole-treated cells displayed an increased abundance of the majority of known adhesion complex components, but no change in the levels of the fibronectin-binding α(5)β(1) integrin. Immunofluorescence analyses confirmed these findings, but revealed a change in localisation of adhesion complex components. Specifically, in untreated cells, α(5)-integrin co-localised with vinculin at peripherally located focal adhesions and with tensin at centrally located fibrillar adhesions. In nocodazole-treated cells, however, α(5)-integrin was found in both peripherally located and centrally located adhesion complexes that contained both vinculin and tensin, suggesting a switch in the maturation state of adhesion complexes to favour focal adhesions. Moreover, the switch to focal adhesions was confirmed to be force-dependent as inhibition of cell contractility with the Rho-associated protein kinase inhibitor, Y-27632, prevented the nocodazole-induced conversion. These results highlight a complex interplay between the microtubule cytoskeleton, adhesion complex maturation state and intracellular contractile force, and provide a resource for future adhesion signaling studies. The proteomics data have been deposited in the ProteomeXchange with identifier PXD001183. |
---|