Cargando…

Specific Visualization of Tumor Cells Using Upconversion Nanophosphors

The development of targeted constructs on the basis of photoluminescent nanoparticles with a high photo- and chemical stability and absorption/emission spectra in the “transparency window” of biological tissues is an important focus area of present-day medical diagnostics. In this work, a targeted t...

Descripción completa

Detalles Bibliográficos
Autores principales: Grebenik, E. A., Generalova, A. N., Nechaev, A. V., Khaydukov, E.V., Mironova, K. E., Stremovskiy, O. A., Lebedenko, E.N., Zvyagin, A. V., Deyev, S. M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: A.I. Gordeyev 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4273091/
https://www.ncbi.nlm.nih.gov/pubmed/25558394
Descripción
Sumario:The development of targeted constructs on the basis of photoluminescent nanoparticles with a high photo- and chemical stability and absorption/emission spectra in the “transparency window” of biological tissues is an important focus area of present-day medical diagnostics. In this work, a targeted two-component construct on the basis of upconversion nanophosphors (UCNPs) and anti-tumor 4D5 scFv was developed for selective labeling of tumor cells overexpressing the HER2 tumor marker characteristic of a number of human malignant tumors. A high affinity barnase : barstar (Bn : Bs) protein pair, which exhibits high stability in a wide range of pH and temperatures, was exploited as a molecular adapter providing self-assembly of the two-component construct. High selectivity for the binding of the two-component 4D5 scFv-Bn : UCNP-Bs construct to human breast adenocarcinoma SK-BR-3 cells overexpressing HER2 was demonstrated. This approach provides an opportunity to produce similar constructs for the visualization of different specific markers in pathogenic tissues, including malignant tumors.