Cargando…
Performance enhancement of ITO/oxide/semiconductor MOS-structure silicon solar cells with voltage biasing
In this study, we demonstrate the photovoltaic performance enhancement of a p-n junction silicon solar cell using a transparent-antireflective ITO/oxide film deposited on the spacing of the front-side finger electrodes and with a DC voltage applied on the ITO-electrode. The depletion width of the p-...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4273678/ https://www.ncbi.nlm.nih.gov/pubmed/25593550 http://dx.doi.org/10.1186/1556-276X-9-658 |
Sumario: | In this study, we demonstrate the photovoltaic performance enhancement of a p-n junction silicon solar cell using a transparent-antireflective ITO/oxide film deposited on the spacing of the front-side finger electrodes and with a DC voltage applied on the ITO-electrode. The depletion width of the p-n junction under the ITO-electrode was induced and extended while the absorbed volume and built-in electric field were also increased when the biasing voltage was increased. The photocurrent and conversion efficiency were increased because more photo-carriers are generated in a larger absorbed volume and because the carriers transported and collected more effectively due to higher biasing voltage effects. Compared to a reference solar cell (which was biased at 0 V), a conversion efficiency enhancement of 26.57% (from 12.42% to 15.72%) and short-circuit current density enhancement of 42.43% (from 29.51 to 42.03 mA/cm(2)) were obtained as the proposed MOS-structure solar cell biased at 2.5 V. In addition, the capacitance-volt (C-V) measurement was also used to examine the mechanism of photovoltaic performance enhancement due to the depletion width being enlarged by applying a DC voltage on an ITO-electrode. |
---|