Cargando…
A numerical study of adaptive space and time discretisations for Gross–Pitaevskii equations
As a basic principle, benefits of adaptive discretisations are an improved balance between required accuracy and efficiency as well as an enhancement of the reliability of numerical computations. In this work, the capacity of locally adaptive space and time discretisations for the numerical solution...
Autores principales: | Thalhammer, Mechthild, Abhau, Jochen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Academic Press
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4274399/ https://www.ncbi.nlm.nih.gov/pubmed/25550676 http://dx.doi.org/10.1016/j.jcp.2012.05.031 |
Ejemplares similares
-
Derivation of the Time Dependent Gross–Pitaevskii Equation in Two Dimensions
por: Jeblick, Maximilian, et al.
Publicado: (2019) -
Localization in Periodic Potentials: From Schrödinger Operators to the Gross-Pitaevskii Equation
por: Pelinovsky, Dmitry E
Publicado: (2011) -
Dynamics of Bose–Einstein Condensates Subject to the Pöschl–Teller Potential through Numerical and Variational Solutions of the Gross–Pitaevskii Equation
por: Pereira, Lucas Carvalho, et al.
Publicado: (2020) -
Bose–Einstein Condensation Beyond the Gross–Pitaevskii Regime
por: Adhikari, Arka, et al.
Publicado: (2020) -
Singularity in the matrix of the coupled Gross-Pitaevskii equations and the related state-transitions in three-species condensates
por: Liu, Y. M., et al.
Publicado: (2017)